pub fn rep_analyse_real_space_function_complex(
    py: Python<'_>,
    inp_sym: PathBuf,
    function: Py<PyFunction>,
    integrality_threshold: f64,
    linear_independence_threshold: f64,
    use_magnetic_group: Option<MagneticSymmetryAnalysisKind>,
    use_double_group: bool,
    use_cayley_table: bool,
    symmetry_transformation_kind: SymmetryTransformationKind,
    eigenvalue_comparison_mode: EigenvalueComparisonMode,
    grid_points: Bound<'_, PyArray2<f64>>,
    weight: Bound<'_, PyArray1<Complex<f64>>>,
    write_overlap_eigenvalues: bool,
    write_character_table: bool,
    infinite_order_to_finite: Option<u32>,
    angular_function_integrality_threshold: f64,
    angular_function_linear_independence_threshold: f64,
    angular_function_max_angular_momentum: u32,
) -> PyResult<()>
Expand description

Python-exposed function to perform representation symmetry analysis for complex-valued real-space functions and log the result via the qsym2-output logger at the INFO level.

§Arguments

  • inp_sym - A path to the QSym2FileType::Sym file containing the symmetry-group detection result for the system. This will be used to construct abstract groups and character tables for representation analysis. Python type: str.
  • function - A Python function callable on three Cartesian coordinates to give a scalar value. Python type: Callable[[float, float, float], complex].
  • integrality_threshold - The threshold for verifying if subspace multiplicities are integral. Python type: float.
  • linear_independence_threshold - The threshold for determining the linear independence subspace via the non-zero eigenvalues of the orbit overlap matrix. Python type: float.
  • use_magnetic_group - An option indicating if the magnetic group is to be used for symmetry analysis, and if so, whether unitary representations or unitary-antiunitary corepresentations should be used. Python type: None | MagneticSymmetryAnalysisKind.
  • use_double_group - A boolean indicating if the double group of the prevailing symmetry group is to be used for representation analysis instead. Python type: bool.
  • use_cayley_table - A boolean indicating if the Cayley table for the group, if available, should be used to speed up the calculation of orbit overlap matrices. Python type: bool.
  • symmetry_transformation_kind - An enumerated type indicating the type of symmetry transformations to be performed on the origin real-space function to generate the orbit. Python type: SymmetryTransformationKind.
  • eigenvalue_comparison_mode - An enumerated type indicating the mode of comparison of orbit overlap eigenvalues with the specified linear_independence_threshold. Python type: EigenvalueComparisonMode.
  • grid_points - The grid points at which the real-space function is evaluated specified as a $3 \times N$ array where $N$ is the number of points. Python type: numpy.2darray[float].
  • weight - The weight to be used in the computation of overlaps between real-space functions specified as a one-dimensional array. The number of weight values must match the number of grid points. Python type: numpy.1darray[float].
  • write_overlap_eigenvalues - A boolean indicating if the eigenvalues of the real-space function orbit overlap matrix are to be written to the output. Python type: bool.
  • write_character_table - A boolean indicating if the character table of the prevailing symmetry group is to be printed out. Python type: bool.
  • infinite_order_to_finite - The finite order with which infinite-order generators are to be interpreted to form a finite subgroup of the prevailing infinite group. This finite subgroup will be used for symmetry analysis. Python type: Optional[int].
  • angular_function_integrality_threshold - The threshold for verifying if subspace multiplicities are integral for the symmetry analysis of angular functions. Python type: float.
  • angular_function_linear_independence_threshold - The threshold for determining the linear independence subspace via the non-zero eigenvalues of the orbit overlap matrix for the symmetry analysis of angular functions. Python type: float.
  • angular_function_max_angular_momentum - The maximum angular momentum order to be used in angular function symmetry analysis. Python type: int.