pub fn calc_weighted_codensity_matrix<T>(
lowdin_paired_coefficients: &LowdinPairedCoefficients<T>,
) -> Result<Array2<T>, Error>where
T: ComplexFloat + ScalarOperand,
Expand description
Calculates the weighted codensity matrix between a set of Löwdin-paired spin-orbitals in
determinants $^{w}\Psi
$ and $^{x}\Psi
$.
The weighted codensity matrix described above is given by
^{wx}\mathbf{W} =
\sum_{\substack{i = 1\\ ^{wx}\lambda_i \neq 0}}^{N_{\mathrm{e}}}
\frac{^{wx}\mathbf{P}_i}{^{wx}\lambda_i}
where $^{wx}\mathbf{P}_i
$ is the unweighted codensity matrix between Löwdin-paired spin-orbitals
$i
$ in determinants $^{w}\Psi
$ and $^{x}\Psi
$, and the sum runs over up to
:math:N_{\mathrm{e}}
pairs of Löwdin-paired spin-orbitals of consideration, excluding those
that have zero Löwdin overlaps.
§Arguments
lowdin_paired_coefficients
- Structure containing the Löwdin-paired coefficient matrices.
§Returns
The weighted codensity matrix $^{wx}\mathbf{W}
$.