1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
//! Symmetry analysis via representation and corepresentation theories.
use std::cmp::Ordering;
use std::fmt;
use std::ops::Mul;
use anyhow::{self, format_err, Context};
use duplicate::duplicate_item;
use itertools::Itertools;
use log;
use ndarray::{s, Array, Array1, Array2, Axis, Dimension, Ix0, Ix2};
use ndarray_einsum_beta::*;
use ndarray_linalg::{solve::Inverse, types::Lapack};
use num_complex::{Complex, ComplexFloat};
use num_traits::{ToPrimitive, Zero};
#[cfg(feature = "python")]
use pyo3::prelude::*;
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use crate::chartab::chartab_group::CharacterProperties;
use crate::chartab::{CharacterTable, DecompositionError, SubspaceDecomposable};
use crate::group::{class::ClassProperties, GroupProperties};
use crate::io::format::{log_subtitle, qsym2_output};
use crate::symmetry::symmetry_group::UnitaryRepresentedSymmetryGroup;
// =======
// Overlap
// =======
// ----------------
// Trait definition
// ----------------
/// Trait for computing the inner product
/// $`\langle \hat{\iota} \mathbf{v}_i, \mathbf{v}_j \rangle`$ between two linear-space quantities
/// $`\mathbf{v}_i`$ and $`\mathbf{v}_j`$. The involutory operator $`\hat{\iota}`$ determines
/// whether the inner product is a sesquilinear form or a bilinear form.
pub trait Overlap<T, D>
where
T: ComplexFloat + fmt::Debug + Lapack,
D: Dimension,
{
/// If `true`, the inner product is bilinear and $`\hat{\iota} = \hat{\kappa}`$. If `false`,
/// the inner product is sesquilinear and $`\hat{\iota} = \mathrm{id}`$.
fn complex_symmetric(&self) -> bool;
/// Returns the overlap between `self` and `other`, with respect to a metric `metric` (and
/// possibly its complex-symmetric version `metric_h`) of the underlying basis in which `self`
/// and `other` are expressed.
fn overlap(
&self,
other: &Self,
metric: Option<&Array<T, D>>,
metric_h: Option<&Array<T, D>>,
) -> Result<T, anyhow::Error>;
/// Returns a string describing the mathematical definition of the overlap (*i.e.* the inner
/// product) between two quantities of this type.
fn overlap_definition(&self) -> String;
}
// =====
// Orbit
// =====
// --------------------------------------
// Struct definitions and implementations
// --------------------------------------
/// Lazy iterator for orbits generated by the action of a group on an origin.
pub struct OrbitIterator<'a, G, I>
where
G: GroupProperties,
{
/// A mutable iterator over the elements of the group. Each element will be applied on the
/// origin to yield a corresponding item in the orbit.
group_iter: <<G as GroupProperties>::ElementCollection as IntoIterator>::IntoIter,
/// The origin of the orbit.
origin: &'a I,
/// A function defining the action of each group element on the origin.
action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
}
impl<'a, G, I> OrbitIterator<'a, G, I>
where
G: GroupProperties,
{
/// Creates and returns a new orbit iterator.
///
/// # Arguments
///
/// * `group` - A group.
/// * `origin` - An origin.
/// * `action` - A function or closure defining the action of each group element on the origin.
///
/// # Returns
///
/// An orbit iterator.
pub fn new(
group: &G,
origin: &'a I,
action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
) -> Self {
Self {
group_iter: group.elements().clone().into_iter(),
origin,
action,
}
}
}
impl<'a, G, I> Iterator for OrbitIterator<'a, G, I>
where
G: GroupProperties,
{
type Item = Result<I, anyhow::Error>;
fn next(&mut self) -> Option<Self::Item> {
self.group_iter
.next()
.map(|op| (self.action)(&op, self.origin))
}
}
// ----------------
// Trait definition
// ----------------
/// Trait for orbits arising from group actions.
pub trait Orbit<G, I>
where
G: GroupProperties,
{
/// Type of the iterator over items in the orbit.
type OrbitIter: Iterator<Item = Result<I, anyhow::Error>>;
/// The group generating the orbit.
fn group(&self) -> &G;
/// The origin of the orbit.
fn origin(&self) -> &I;
/// An iterator over items in the orbit arising from the action of the group on the origin.
fn iter(&self) -> Self::OrbitIter;
}
// ========
// Analysis
// ========
// ---------------
// Enum definition
// ---------------
/// Enumerated type specifying the comparison mode for filtering out orbit overlap
/// eigenvalues.
#[derive(Clone, Debug, Serialize, Deserialize)]
#[cfg_attr(feature = "python", pyclass)]
pub enum EigenvalueComparisonMode {
/// Compares the eigenvalues using only their real parts.
Real,
/// Compares the eigenvalues using their moduli.
Modulus,
}
impl Default for EigenvalueComparisonMode {
fn default() -> Self {
Self::Modulus
}
}
impl fmt::Display for EigenvalueComparisonMode {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
EigenvalueComparisonMode::Real => write!(f, "Real part"),
EigenvalueComparisonMode::Modulus => write!(f, "Modulus"),
}
}
}
// ----------------
// Trait definition
// ----------------
// ~~~~~~~~~~~
// RepAnalysis
// ~~~~~~~~~~~
/// Trait for representation or corepresentation analysis on an orbit of items spanning a
/// linear space.
pub trait RepAnalysis<G, I, T, D>: Orbit<G, I>
where
T: ComplexFloat + Lapack + fmt::Debug,
<T as ComplexFloat>::Real: ToPrimitive,
G: GroupProperties + ClassProperties + CharacterProperties,
G::GroupElement: fmt::Display,
G::CharTab: SubspaceDecomposable<T>,
D: Dimension,
I: Overlap<T, D> + Clone,
Self::OrbitIter: Iterator<Item = Result<I, anyhow::Error>>,
{
// ----------------
// Required methods
// ----------------
/// Sets the overlap matrix between the items in the orbit.
///
/// # Arguments
///
/// * `smat` - The overlap matrix between the items in the orbit.
fn set_smat(&mut self, smat: Array2<T>);
/// Returns the overlap matrix between the items in the orbit.
#[must_use]
fn smat(&self) -> Option<&Array2<T>>;
/// Returns the transformation matrix $`\mathbf{X}`$ for the overlap matrix $`\mathbf{S}`$
/// between the items in the orbit.
///
/// The matrix $`\mathbf{X}`$ serves to bring $`\mathbf{S}`$ to full rank, *i.e.*, the matrix
/// $`\tilde{\mathbf{S}}`$ defined by
///
/// ```math
/// \tilde{\mathbf{S}} = \mathbf{X}^{\dagger\lozenge} \mathbf{S} \mathbf{X}
/// ```
///
/// is a full-rank matrix.
///
/// If the overlap between items is complex-symmetric (see [`Overlap::complex_symmetric`]), then
/// $`\lozenge = *`$ is the complex-conjugation operation, otherwise, $`\lozenge`$ is the
/// identity.
///
/// Depending on how $`\mathbf{X}`$ has been computed, $`\tilde{\mathbf{S}}`$ might also be
/// orthogonal. Either way, $`\tilde{\mathbf{S}}`$ is always guaranteed to be of full-rank.
#[must_use]
fn xmat(&self) -> &Array2<T>;
/// Returns the norm-preserving scalar map $`f`$ for every element of the generating group
/// defined by
///
/// ```math
/// \langle \hat{\iota} \mathbf{v}_w, \hat{g}_i \mathbf{v}_x \rangle
/// = f \left( \langle \hat{\iota} \hat{g}_i^{-1} \mathbf{v}_w, \mathbf{v}_x \rangle \right).
/// ```
///
/// Typically, if $`\hat{g}_i`$ is unitary, then $`f`$ is the identity, and if $`\hat{g}_i`$ is
/// antiunitary, then $`f`$ is the complex-conjugation operation. Either way, the norm of the
/// inner product is preserved.
///
/// If the overlap between items is complex-symmetric (see [`Overlap::complex_symmetric`]), then
/// this map is currently unsupported because it is currently unclear if the unitary and
/// antiunitary symmetry operators in QSym² are .
#[must_use]
fn norm_preserving_scalar_map(&self, i: usize) -> Result<fn(T) -> T, anyhow::Error>;
/// Returns the threshold for integrality checks of irreducible representation or
/// corepresentation multiplicities.
#[must_use]
fn integrality_threshold(&self) -> <T as ComplexFloat>::Real;
/// Returns the enumerated type specifying the comparison mode for filtering out orbit overlap
/// eigenvalues.
#[must_use]
fn eigenvalue_comparison_mode(&self) -> &EigenvalueComparisonMode;
// ----------------
// Provided methods
// ----------------
/// Calculates and stores the overlap matrix between items in the orbit, with respect to a
/// metric of the basis in which these items are expressed.
///
/// # Arguments
///
/// * `metric` - The metric of the basis in which the orbit items are expressed.
/// * `metric_h` - The complex-symmetric metric of the basis in which the orbit items are
/// expressed. This is required if antiunitary operations are involved.
/// * `use_cayley_table` - A boolean indicating if the Cayley table of the group should be used
/// to speed up the computation of the overlap matrix.
fn calc_smat(
&mut self,
metric: Option<&Array<T, D>>,
metric_h: Option<&Array<T, D>>,
use_cayley_table: bool,
) -> Result<&mut Self, anyhow::Error> {
let order = self.group().order();
let mut smat = Array2::<T>::zeros((order, order));
let item_0 = self.origin();
if let (Some(ctb), true) = (self.group().cayley_table(), use_cayley_table) {
log::debug!("Cayley table available. Group closure will be used to speed up overlap matrix computation.");
let ovs = self
.iter()
.map(|item_res| {
let item = item_res?;
item.overlap(item_0, metric, metric_h)
})
.collect::<Result<Vec<_>, _>>()?;
for (i, j) in (0..order).cartesian_product(0..order) {
let jinv = ctb
.slice(s![.., j])
.iter()
.position(|&x| x == 0)
.ok_or(format_err!(
"Unable to find the inverse of group element `{j}`."
))?;
let jinv_i = ctb[(jinv, i)];
smat[(i, j)] = self.norm_preserving_scalar_map(jinv)?(ovs[jinv_i]);
}
} else {
log::debug!("Cayley table not available or the use of Cayley table not requested. Overlap matrix will be constructed without group-closure speed-up.");
for pair in self
.iter()
.map(|item_res| item_res.map_err(|err| err.to_string()))
.enumerate()
.combinations_with_replacement(2)
{
let (w, item_w_res) = &pair[0];
let (x, item_x_res) = &pair[1];
let item_w = item_w_res
.as_ref()
.map_err(|err| format_err!(err.clone()))
.with_context(|| "One of the items in the orbit is not available")?;
let item_x = item_x_res
.as_ref()
.map_err(|err| format_err!(err.clone()))
.with_context(|| "One of the items in the orbit is not available")?;
smat[(*w, *x)] = item_w.overlap(item_x, metric, metric_h).map_err(|err| {
log::warn!("{err}");
log::warn!(
"Unable to calculate the overlap between items `{w}` and `{x}` in the orbit."
);
err
})?;
if *w != *x {
smat[(*x, *w)] = item_x.overlap(item_w, metric, metric_h).map_err(|err| {
log::warn!("{err}");
log::warn!(
"Unable to calculate the overlap between items `{x}` and `{w}` in the orbit."
);
err
})?;
}
}
}
if self.origin().complex_symmetric() {
self.set_smat((smat.clone() + smat.t().to_owned()).mapv(|x| x / (T::one() + T::one())))
} else {
self.set_smat(
(smat.clone() + smat.t().to_owned().mapv(|x| x.conj()))
.mapv(|x| x / (T::one() + T::one())),
)
}
Ok(self)
}
/// Normalises overlap matrix between items in the orbit such that its diagonal entries are
/// unity.
///
/// # Errors
///
/// Errors if no orbit overlap matrix can be found, of if linear-algebraic errors are
/// encountered.
fn normalise_smat(&mut self) -> Result<&mut Self, anyhow::Error> {
let smat = self
.smat()
.ok_or(format_err!("No orbit overlap matrix to normalise."))?;
let norm = smat.diag().mapv(|x| <T as ComplexFloat>::sqrt(x));
let nspatial = norm.len();
let norm_col = norm
.clone()
.into_shape([nspatial, 1])
.map_err(|err| format_err!(err))?;
let norm_row = norm
.into_shape([1, nspatial])
.map_err(|err| format_err!(err))?;
let norm_mat = norm_col.dot(&norm_row);
let normalised_smat = smat / norm_mat;
self.set_smat(normalised_smat);
Ok(self)
}
/// Computes the $`\mathbf{T}(g)`$ matrix for a particular element $`g`$ of the generating
/// group.
///
/// The elements of this matrix are given by
///
/// ```math
/// T_{wx}(g)
/// = \langle \hat{\iota} \hat{g}_w \mathbf{v}_0, \hat{g} \hat{g}_x \mathbf{v}_0 \rangle.
/// ```
///
/// This means that $`\mathbf{T}(g)`$ is just the orbit overlap matrix $`\mathbf{S}`$ with its
/// columns permuted according to the way $`g`$ composites on the elements in the group from
/// the left.
///
/// # Arguments
///
/// * `op` - The element $`g`$ in the generating group.
///
/// # Returns
///
/// The matrix $`\mathbf{T}(g)`$.
#[must_use]
fn calc_tmat(&self, op: &G::GroupElement) -> Result<Array2<T>, anyhow::Error> {
let ctb = self
.group()
.cayley_table()
.expect("The Cayley table for the group cannot be found.");
let i = self.group().get_index_of(op).unwrap_or_else(|| {
panic!("Unable to retrieve the index of element `{op}` in the group.")
});
let ix = ctb.slice(s![i, ..]).iter().cloned().collect::<Vec<_>>();
let twx = self
.smat()
.ok_or(format_err!("No orbit overlap matrix found."))?
.select(Axis(1), &ix);
Ok(twx)
}
/// Computes the representation or corepresentation matrix $`\mathbf{D}(g)`$ for a particular
/// element $`g`$ in the generating group in the basis of the orbit.
///
/// The matrix $`\mathbf{D}(g)`$ is defined by
///
/// ```math
/// \hat{g} \mathcal{G} \cdot \mathbf{v}_0 = \mathcal{G} \cdot \mathbf{v}_0 \mathbf{D}(g),
/// ```
///
/// where $`\mathcal{G} \cdot \mathbf{v}_0`$ is the orbit generated by the action of the group
/// $`\mathcal{G}`$ on the origin $`\mathbf{v}_0`$.
///
/// # Arguments
///
/// * `op` - The element $`g`$ of the generating group.
///
/// # Returns
///
/// The matrix $`\mathbf{D}(g)`$.
#[must_use]
fn calc_dmat(&self, op: &G::GroupElement) -> Result<Array2<T>, anyhow::Error> {
let complex_symmetric = self.origin().complex_symmetric();
let xmath = if complex_symmetric {
self.xmat().t().to_owned()
} else {
self.xmat().t().mapv(|x| x.conj())
};
let smattilde = xmath
.dot(
self.smat()
.ok_or(format_err!("No orbit overlap matrix found."))?,
)
.dot(self.xmat());
let smattilde_inv = smattilde
.inv()
.expect("The inverse of S~ could not be found.");
let dmat = einsum(
"ij,jk,kl,lm->im",
&[&smattilde_inv, &xmath, &self.calc_tmat(op)?, self.xmat()],
)
.map_err(|err| format_err!(err))
.with_context(|| "Unable to compute the matrix product [(S~)^(-1) X† T X].")?
.into_dimensionality::<Ix2>()
.map_err(|err| format_err!(err))
.with_context(|| {
"Unable to convert the matrix product [(S~)^(-1) X† T X] to two dimensions."
});
dmat
}
/// Computes the character of a particular element $`g`$ in the generating group in the basis
/// of the orbit.
///
/// See [`Self::calc_dmat`] for more information.
///
/// # Arguments
///
/// * `op` - The element $`g`$ of the generating group.
///
/// # Returns
///
/// The character $`\chi(g)`$.
#[must_use]
fn calc_character(&self, op: &G::GroupElement) -> Result<T, anyhow::Error> {
let complex_symmetric = self.origin().complex_symmetric();
let xmath = if complex_symmetric {
self.xmat().t().to_owned()
} else {
self.xmat().t().mapv(|x| x.conj())
};
let smattilde = xmath
.dot(
self.smat()
.ok_or(format_err!("No orbit overlap matrix found."))?,
)
.dot(self.xmat());
let smattilde_inv = smattilde
.inv()
.expect("The inverse of S~ could not be found.");
let chi = einsum(
"ij,jk,kl,li",
&[&smattilde_inv, &xmath, &self.calc_tmat(op)?, self.xmat()],
)
.map_err(|err| format_err!(err))
.with_context(|| "Unable to compute the trace of the matrix product [(S~)^(-1) X† T X].")?
.into_dimensionality::<Ix0>()
.map_err(|err| format_err!(err))
.with_context(|| "Unable to convert the trace of the matrix product [(S~)^(-1) X† T X] to zero dimensions.")?;
chi.into_iter().next().ok_or(format_err!(
"Unable to extract the character from the representation matrix."
))
}
/// Computes the characters of the elements in a conjugacy-class transversal of the generating
/// group in the basis of the orbit.
///
/// See [`Self::calc_dmat`] and [`Self::calc_character`] for more information.
///
/// # Returns
///
/// The conjugacy class symbols and the corresponding characters.
#[must_use]
fn calc_characters(
&self,
) -> Result<Vec<(<G as ClassProperties>::ClassSymbol, T)>, anyhow::Error> {
let complex_symmetric = self.origin().complex_symmetric();
let xmath = if complex_symmetric {
self.xmat().t().to_owned()
} else {
self.xmat().t().mapv(|x| x.conj())
};
let smattilde = xmath
.dot(
self.smat()
.ok_or(format_err!("No orbit overlap matrix found."))?,
)
.dot(self.xmat());
let smattilde_inv = smattilde
.inv()
.expect("The inverse of S~ could not be found.");
let chis = (0..self.group().class_number()).map(|cc_i| {
let cc = self.group().get_cc_symbol_of_index(cc_i).unwrap();
let op = self.group().get_cc_transversal(cc_i).unwrap();
let chi = einsum(
"ij,jk,kl,li",
&[&smattilde_inv, &xmath, &self.calc_tmat(&op)?, self.xmat()],
)
.map_err(|err| format_err!(err))
.with_context(|| "Unable to compute the trace of the matrix product [(S~)^(-1) X† T X].")?
.into_dimensionality::<Ix0>()
.map_err(|err| format_err!(err))
.with_context(|| "Unable to convert the trace of the matrix product [(S~)^(-1) X† T X] to zero dimensions.")?;
let chi_val = chi.into_iter().next().ok_or(format_err!(
"Unable to extract the character from the representation matrix."
))?;
Ok((cc, chi_val))
}).collect::<Result<Vec<_>, _>>();
chis
}
/// Reduces the representation or corepresentation spanned by the items in the orbit to a
/// direct sum of the irreducible representations or corepresentations of the generating group.
///
/// # Returns
///
/// The decomposed result.
///
/// # Errors
///
/// Errors if the decomposition fails, *e.g.* because one or more calculated multiplicities
/// are non-integral.
fn analyse_rep(
&self,
) -> Result<
<<G as CharacterProperties>::CharTab as SubspaceDecomposable<T>>::Decomposition,
DecompositionError,
> {
let chis = self
.calc_characters()
.map_err(|err| DecompositionError(err.to_string()))?;
let res = self.group().character_table().reduce_characters(
&chis.iter().map(|(cc, chi)| (cc, *chi)).collect::<Vec<_>>(),
self.integrality_threshold(),
);
res
}
/// Converts a slice of tuples of class symbols and characters to a nicely formatted table.
///
/// # Arguments
///
/// * `chis` - A slice of tuples of class symbols and characters.
/// * `integrality_threshold` - Threshold for ascertaining the integrality of characters.
///
/// # Returns
///
/// A string of a nicely formatted table.
fn characters_to_string(
&self,
chis: &[(<G as ClassProperties>::ClassSymbol, T)],
integrality_threshold: <T as ComplexFloat>::Real,
) -> String
where
T: ComplexFloat + Lapack + fmt::Debug,
<T as ComplexFloat>::Real: ToPrimitive,
{
let ndigits = (-integrality_threshold.log10()).to_usize().unwrap_or(6) + 1;
let (ccs, characters): (Vec<_>, Vec<_>) = chis
.iter()
.map(|(cc, chi)| (cc.to_string(), format!("{chi:+.ndigits$}")))
.unzip();
let cc_width = ccs
.iter()
.map(|cc| cc.chars().count())
.max()
.unwrap_or(5)
.max(5);
let characters_width = characters
.iter()
.map(|chi| chi.chars().count())
.max()
.unwrap_or(9)
.max(9);
let divider = "┈".repeat(cc_width + characters_width + 4);
let header = format!(" {:<cc_width$} {:<}", "Class", "Character");
let body = Itertools::intersperse(
chis.iter()
.map(|(cc, chi)| format!(" {:<cc_width$} {:<+.ndigits$}", cc.to_string(), chi)),
"\n".to_string(),
)
.collect::<String>();
Itertools::intersperse(
[divider.clone(), header, divider.clone(), body, divider].into_iter(),
"\n".to_string(),
)
.collect::<String>()
}
}
// ~~~~~~~~~~~~~~~~~~~~~~~
// ProjectionDecomposition
// ~~~~~~~~~~~~~~~~~~~~~~~
/// Trait for decomposing the origin of an orbit into the irreducible components of the generating
/// group using the projection operator.
pub trait ProjectionDecomposition<G, I, T, D>: RepAnalysis<G, I, T, D>
where
T: ComplexFloat + Lapack + fmt::Debug,
<T as ComplexFloat>::Real: ToPrimitive,
G: GroupProperties + ClassProperties + CharacterProperties + Sync + Send,
<G as CharacterProperties>::RowSymbol: Sync + Send,
G::GroupElement: fmt::Display,
G::CharTab: SubspaceDecomposable<T>,
D: Dimension,
I: Overlap<T, D> + Clone,
Self: Sync + Send,
Self::OrbitIter: Iterator<Item = Result<I, anyhow::Error>>,
for<'a> Complex<f64>: Mul<&'a T, Output = Complex<f64>>,
{
/// Calculates the irreducible compositions of the origin $`\mathbf{v}`$ of the orbit using the
/// projection operator:
///
/// ```math
/// p_{\Gamma} =
/// \frac{\dim \Gamma}{\lvert \mathcal{G} \rvert}
/// \sum_{i=1}^{\lvert \mathcal{G} \rvert}
/// \chi_{\Gamma}^{*}(\hat{g}_i)
/// \braket{ \mathbf{v} | \hat{g}_i \mathbf{v} }
/// ```
///
/// At the moment, this only works for unitary irreducible representations because of the
/// presence of the characters $`\chi_{\Gamma}(\hat{g}_i)`$ which can only be tabulated for
/// unitary operations.
///
/// # Returns
///
/// A vector of tuples, each of which contains the irreducible row label and the corresponding
/// projection value.
fn calc_projection_compositions(
&self,
) -> Result<
Vec<(
<<G as CharacterProperties>::CharTab as CharacterTable>::RowSymbol,
Complex<f64>,
)>,
anyhow::Error,
> {
self.group()
.character_table()
.get_all_rows()
.iter()
.map(|row_label| {
let group = self.group();
let chartab = group.character_table();
let id_class = group
.get_cc_symbol_of_index(0)
.ok_or(format_err!("Unable to retrieve the identity class."))?;
let dim = chartab
.get_character(&row_label, &id_class).complex_value();
let group_order = group.order().to_f64().ok_or(
DecompositionError("The group order cannot be converted to `f64`.".to_string())
)?;
let projection: Complex<f64> = (0..group.order())
.into_par_iter()
.try_fold(|| Complex::<f64>::zero(), |acc, i| {
let cc_i = group
.get_cc_of_element_index(i)
.ok_or(format_err!("Unable to retrieve the conjugacy class index of element index {i}."))?;
let cc = group
.get_cc_symbol_of_index(cc_i)
.ok_or(format_err!("Unable to retrieve the conjugacy class symbol of conjugacy class index {cc_i}."))?;
let chi_i_star = group.character_table().get_character(&row_label, &cc).complex_conjugate();
let s_0i = self
.smat()
.ok_or(format_err!("No orbit overlap matrix found."))?
.get((0, i))
.ok_or(format_err!("Unable to retrieve the overlap matrix element with index `(0, {i})`."))?;
Ok::<_, anyhow::Error>(acc + chi_i_star.complex_value() * s_0i)
})
.try_reduce(|| Complex::<f64>::zero(), |a, s| Ok(a + s))?;
Ok::<_, anyhow::Error>((row_label.clone(), &dim * projection / group_order))
}).collect::<Result<Vec<_>, anyhow::Error>>()
}
/// Converts a slice of tuples of irreducible row symbols and projection values to a nicely
/// formatted table.
///
/// # Arguments
///
/// * `projections` - A slice of tuples of irreducible row symbols and projection values.
/// * `integrality_threshold` - Threshold for ascertaining the integrality of projection values.
///
/// # Returns
///
/// A string of a nicely formatted table.
fn projections_to_string(
&self,
projections: &[(
<<G as CharacterProperties>::CharTab as CharacterTable>::RowSymbol,
Complex<f64>,
)],
integrality_threshold: <T as ComplexFloat>::Real,
) -> String {
let ndigits = (-integrality_threshold.log10()).to_usize().unwrap_or(6) + 1;
let (row_labels, projection_values): (Vec<_>, Vec<_>) = projections
.iter()
.map(|(row, proj)| (row.to_string(), format!("{proj:+.ndigits$}")))
.unzip();
let row_width = row_labels
.iter()
.map(|row| row.chars().count())
.max()
.unwrap_or(9)
.max(9);
let proj_width = projection_values
.iter()
.map(|proj| proj.chars().count())
.max()
.unwrap_or(10)
.max(10);
let divider = "┈".repeat(row_width + proj_width + 4);
let header = format!(" {:<row_width$} {:<}", "Component", "Projection");
let body = Itertools::intersperse(
projections.iter().map(|(row, proj)| {
format!(" {:<row_width$} {:<+.ndigits$}", row.to_string(), proj)
}),
"\n".to_string(),
)
.collect::<String>();
Itertools::intersperse(
[divider.clone(), header, divider.clone(), body, divider].into_iter(),
"\n".to_string(),
)
.collect::<String>()
}
}
// Partial blanket implementation for orbits generated by unitary-represented symmetry groups over
// real or complex numbers.
#[duplicate_item(
duplicate!{
[ dtype_nested; [f64]; [Complex<f64>] ]
[
gtype_ [ UnitaryRepresentedSymmetryGroup ]
dtype_ [ dtype_nested ]
]
}
)]
impl<O, I, D> ProjectionDecomposition<gtype_, I, dtype_, D> for O
where
O: RepAnalysis<gtype_, I, dtype_, D>,
D: Dimension,
I: Overlap<dtype_, D> + Clone,
Self: Sync + Send,
Self::OrbitIter: Iterator<Item = Result<I, anyhow::Error>>,
{
}
// =================
// Macro definitions
// =================
macro_rules! fn_calc_xmat_real {
( $(#[$meta:meta])* $vis:vis $func:ident ) => {
$(#[$meta])*
$vis fn $func(&mut self, preserves_full_rank: bool) -> Result<&mut Self, anyhow::Error> {
// Real, symmetric S
let thresh = self.linear_independence_threshold;
let smat = self
.smat
.as_ref()
.ok_or(format_err!("No overlap matrix found for this orbit."))?;
use ndarray_linalg::norm::Norm;
if (smat.to_owned() - smat.t()).norm_l2() > thresh {
Err(format_err!("Overlap matrix is not symmetric."))
} else {
let (s_eig, umat) = smat.eigh(UPLO::Lower).map_err(|err| format_err!(err))?;
let nonzero_s_indices = match self.eigenvalue_comparison_mode {
EigenvalueComparisonMode::Modulus => {
s_eig.iter().positions(|x| x.abs() > thresh).collect_vec()
}
EigenvalueComparisonMode::Real => {
s_eig.iter().positions(|x| *x > thresh).collect_vec()
}
};
let nonzero_s_eig = s_eig.select(Axis(0), &nonzero_s_indices);
let nonzero_umat = umat.select(Axis(1), &nonzero_s_indices);
let nullity = smat.shape()[0] - nonzero_s_indices.len();
let xmat = if nullity == 0 && preserves_full_rank {
Array2::eye(smat.shape()[0])
} else {
let s_s = Array2::<f64>::from_diag(&nonzero_s_eig.mapv(|x| 1.0 / x.sqrt()));
nonzero_umat.dot(&s_s)
};
self.smat_eigvals = Some(s_eig);
self.xmat = Some(xmat);
Ok(self)
}
}
}
}
macro_rules! fn_calc_xmat_complex {
( $(#[$meta:meta])* $vis:vis $func:ident ) => {
$(#[$meta])*
$vis fn $func(&mut self, preserves_full_rank: bool) -> Result<&mut Self, anyhow::Error> {
// Complex S, symmetric or Hermitian
let thresh = self.linear_independence_threshold;
let smat = self
.smat
.as_ref()
.ok_or(format_err!("No overlap matrix found for this orbit."))?;
let (s_eig, umat_nonortho) = smat.eig().map_err(|err| format_err!(err))?;
let nonzero_s_indices = match self.eigenvalue_comparison_mode {
EigenvalueComparisonMode::Modulus => s_eig
.iter()
.positions(|x| ComplexFloat::abs(*x) > thresh)
.collect_vec(),
EigenvalueComparisonMode::Real => {
if s_eig
.iter()
.any(|x| Float::abs(ComplexFloat::im(*x)) > thresh)
{
log::warn!("Comparing eigenvalues using the real parts, but not all eigenvalues are real.");
}
s_eig
.iter()
.positions(|x| ComplexFloat::re(*x) > thresh)
.collect_vec()
}
};
let nonzero_s_eig = s_eig.select(Axis(0), &nonzero_s_indices);
let nonzero_umat_nonortho = umat_nonortho.select(Axis(1), &nonzero_s_indices);
// `eig` does not guarantee orthogonality of `nonzero_umat_nonortho`.
// Gram--Schmidt is therefore required.
let nonzero_umat = complex_modified_gram_schmidt(
&nonzero_umat_nonortho,
self.origin.complex_symmetric(),
thresh,
)
.map_err(
|_| format_err!("Unable to orthonormalise the linearly-independent eigenvectors of the overlap matrix.")
)?;
let nullity = smat.shape()[0] - nonzero_s_indices.len();
let xmat = if nullity == 0 && preserves_full_rank {
Array2::<Complex<T>>::eye(smat.shape()[0])
} else {
let s_s = Array2::<Complex<T>>::from_diag(
&nonzero_s_eig.mapv(|x| Complex::<T>::from(T::one()) / x.sqrt()),
);
nonzero_umat.dot(&s_s)
};
self.smat_eigvals = Some(s_eig);
self.xmat = Some(xmat);
Ok(self)
}
}
}
pub(crate) use fn_calc_xmat_complex;
pub(crate) use fn_calc_xmat_real;
// =================
// Utility functions
// =================
/// Logs overlap eigenvalues nicely and indicates where the threshold has been crossed.
///
/// # Arguments
///
/// * `eigvals` - The eigenvalues.
/// * `thresh` - The cut-off threshold to be marked out.
pub(crate) fn log_overlap_eigenvalues<T>(
title: &str,
eigvals: &Array1<T>,
thresh: <T as ComplexFloat>::Real,
eigenvalue_comparison_mode: &EigenvalueComparisonMode,
) where
T: std::fmt::LowerExp + ComplexFloat,
<T as ComplexFloat>::Real: std::fmt::LowerExp,
{
let mut eigvals_sorted = eigvals.iter().collect::<Vec<_>>();
match eigenvalue_comparison_mode {
EigenvalueComparisonMode::Modulus => {
eigvals_sorted.sort_by(|a, b| a.abs().partial_cmp(&b.abs()).unwrap());
}
EigenvalueComparisonMode::Real => {
eigvals_sorted.sort_by(|a, b| a.re().partial_cmp(&b.re()).unwrap());
}
}
eigvals_sorted.reverse();
let eigvals_str = eigvals_sorted
.iter()
.map(|v| format!("{v:+.3e}"))
.collect::<Vec<_>>();
log_subtitle(title);
qsym2_output!("");
match eigenvalue_comparison_mode {
EigenvalueComparisonMode::Modulus => {
qsym2_output!("Eigenvalues are sorted in decreasing order of their moduli.");
}
EigenvalueComparisonMode::Real => {
qsym2_output!("Eigenvalues are sorted in decreasing order of their real parts.");
}
}
let count_length = usize::try_from(eigvals.len().ilog10() + 2).unwrap_or(2);
let eigval_length = eigvals_str
.iter()
.map(|v| v.chars().count())
.max()
.unwrap_or(20);
qsym2_output!("{}", "┈".repeat(count_length + 3 + eigval_length));
qsym2_output!("{:>count_length$} Eigenvalue", "#");
qsym2_output!("{}", "┈".repeat(count_length + 3 + eigval_length));
let mut write_thresh = false;
for (i, eigval) in eigvals_str.iter().enumerate() {
let cmp = match eigenvalue_comparison_mode {
EigenvalueComparisonMode::Modulus => {
eigvals_sorted[i].abs().partial_cmp(&thresh).expect(
"Unable to compare the modulus of an eigenvalue with the specified threshold.",
)
}
EigenvalueComparisonMode::Real => eigvals_sorted[i].re().partial_cmp(&thresh).expect(
"Unable to compare the real part of an eigenvalue with the specified threshold.",
),
};
if cmp == Ordering::Less && !write_thresh {
let comparison_mode_str = match eigenvalue_comparison_mode {
EigenvalueComparisonMode::Modulus => "modulus-based",
EigenvalueComparisonMode::Real => "real-part-based",
};
qsym2_output!(
"{} <-- linear independence threshold ({comparison_mode_str}): {:+.3e}",
"-".repeat(count_length + 3 + eigval_length),
thresh
);
write_thresh = true;
}
qsym2_output!("{i:>count_length$} {eigval}",);
}
qsym2_output!("{}", "┈".repeat(count_length + 3 + eigval_length));
}