1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
//! Conversions between spherical/solid harmonics and Cartesian functions.

use std::cmp::Ordering;

use factorial::Factorial;
use ndarray::{Array2, Axis};
use num::{BigUint, Complex};
use num_traits::{cast::ToPrimitive, Zero};

use crate::basis::ao::{CartOrder, PureOrder};
use crate::permutation::PermutableCollection;

#[cfg(test)]
#[path = "sh_conversion_tests.rs"]
mod sh_conversion_tests;

/// Calculates the number of combinations of `n` things taken `r` at a time (signed arguments).
///
/// If $`n < 0`$ or $`r < 0`$ or $`r > n`$, `0` is returned.
///
/// # Arguments
///
/// * `n` - Number of things.
/// * `r` - Number of elements taken.
///
/// # Returns
///
/// The number of combinations.
fn comb(n: i32, r: i32) -> BigUint {
    if n < 0 || r < 0 || r > n {
        BigUint::zero()
    } else {
        let nu = u32::try_from(n).expect("Unable to convert `n` to `u32`.");
        let ru = u32::try_from(r).expect("Unable to convert `r` to `u32`.");
        (nu - ru + 1..=nu).product::<BigUint>()
            / BigUint::from(ru)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {ru}."))
    }
}

/// Calculates the number of combinations of `n` things taken `r` at a time (unsigned arguments).
///
/// If $`r > n`$, `0` is returned.
///
/// # Arguments
///
/// * `n` - Number of things.
/// * `r` - Number of elements taken.
///
/// # Returns
///
/// The number of combinations.
fn combu(nu: u32, ru: u32) -> BigUint {
    if ru > nu {
        BigUint::zero()
    } else {
        (nu - ru + 1..=nu).product::<BigUint>()
            / BigUint::from(ru)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {ru}."))
    }
}

/// Calculates the number of permutations of `n` things taken `r` at a time (signed arguments).
///
/// If $`n < 0`$ or $`r < 0`$ or $`r > n`$, `0` is returned.
///
/// # Arguments
///
/// * `n` - Number of things.
/// * `r` - Number of elements taken.
///
/// # Returns
///
/// The number of permutations.
fn perm(n: i32, r: i32) -> BigUint {
    if n < 0 || r < 0 || r > n {
        BigUint::zero()
    } else {
        let nu = u32::try_from(n).expect("Unable to convert `n` to `u32`.");
        let ru = u32::try_from(r).expect("Unable to convert `r` to `u32`.");
        (nu - ru + 1..=nu).product::<BigUint>()
    }
}

/// Calculates the number of permutations of `n` things taken `r` at a time (unsigned arguments).
///
/// If $`r > n`$, `0` is returned.
///
/// # Arguments
///
/// * `n` - Number of things.
/// * `r` - Number of elements taken.
///
/// # Returns
///
/// The number of permutations.
fn permu(nu: u32, ru: u32) -> BigUint {
    if ru > nu {
        BigUint::zero()
    } else {
        (nu - ru + 1..=nu).product::<BigUint>()
    }
}

/// Obtains the normalisation constant for a solid harmonic Gaussian, as given in Equation 8 of
/// Schlegel, H. B. & Frisch, M. J. Transformation between Cartesian and pure spherical harmonic
/// Gaussians. *International Journal of Quantum Chemistry* **54**, 83–87 (1995),
/// [DOI](https://doi.org/10.1002/qua.560540202).
///
/// The complex solid harmonic Gaussian is defined in Equation 1 of the above reference as
///
/// ```math
/// \tilde{g}(\alpha, l, m, n, \mathbf{r})
///     = \tilde{N}(n, \alpha) Y_l^m r^n e^{-\alpha r^2},
/// ```
///
/// where $`Y_l^m`$ is a complex spherical harmonic of degree $`l`$ and order $`m`$.
///
/// # Arguments
///
/// * `n` - The non-negative exponent of the radial part of the solid harmonic Gaussian.
/// * `alpha` - The coefficient on the exponent of the Gaussian term.
///
/// # Returns
///
/// The normalisation constant $`\tilde{N}(n, \alpha)`$.
fn norm_sph_gaussian(n: u32, alpha: f64) -> f64 {
    let num = (BigUint::from(2u64).pow(2 * n + 3)
        * BigUint::from(u64::from(n) + 1)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", u64::from(n) + 1)))
    .to_f64()
    .expect("Unable to convert a `BigUint` value to `f64`.")
        * alpha.powf(f64::from(n) + 1.5);
    let den = BigUint::from(2 * u64::from(n) + 2)
        .checked_factorial()
        .unwrap_or_else(|| {
            panic!(
                "Unable to compute the factorial of {}.",
                2 * u64::from(n) + 2
            )
        })
        .to_f64()
        .expect("Unable to convert a `BigUint` value to `f64`.")
        * std::f64::consts::PI.sqrt();
    (num / den).sqrt()
}

/// Obtains the normalisation constant for a Cartesian Gaussian, as given in Equation 9 of
/// Schlegel, H. B. & Frisch, M. J. Transformation between Cartesian and pure spherical harmonic
/// Gaussians. *International Journal of Quantum Chemistry* **54**, 83–87 (1995),
/// [DOI](https://doi.org/10.1002/qua.560540202).
///
/// The Cartesian Gaussian is defined in Equation 2 of the above reference as
///
/// ```math
/// g(\alpha, l_x, l_y, l_z, \mathbf{r})
///     = N(l_x, l_y, l_z, \alpha) x^{l_x} y^{l_y} z^{l_z} e^{-\alpha r^2}.
/// ```
///
/// # Arguments
///
/// * `lcartqns` - A tuple of $`(l_x, l_y, l_z)`$ specifying the non-negative exponents of
/// the Cartesian components of the Cartesian Gaussian.
/// * `alpha` - The coefficient on the exponent of the Gaussian term.
///
/// # Returns
///
/// The normalisation constant $`N(l_x, l_y, l_z, \alpha)`$.
fn norm_cart_gaussian(lcartqns: (u32, u32, u32), alpha: f64) -> f64 {
    let (lx, ly, lz) = lcartqns;
    let lcart = lx + ly + lz;
    let num = (BigUint::from(2u32).pow(2 * lcart)
        * BigUint::from(lx)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {lx}."))
        * BigUint::from(ly)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {ly}."))
        * BigUint::from(lz)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {lz}.")))
    .to_f64()
    .expect("Unable to convert a `BigUint` value to `f64`.")
        * alpha.powf(f64::from(lcart) + 1.5);
    let den = (BigUint::from(2 * lx)
        .checked_factorial()
        .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * lx))
        * BigUint::from(2 * ly)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * ly))
        * BigUint::from(2 * lz)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * lz)))
    .to_f64()
    .expect("Unable to convert a `BigUint` value to `f64`.")
        * std::f64::consts::PI.powi(3).sqrt();
    (num / den).sqrt()
}

/// Obtain the complex coefficients $`c(l, m_l, n, l_x, l_y, l_z)`$ based on Equation 15 of
/// Schlegel, H. B. & Frisch, M. J. Transformation between Cartesian and pure spherical harmonic
/// Gaussians. *International Journal of Quantum Chemistry* **54**, 83–87 (1995),
/// [DOI](https://doi.org/10.1002/qua.560540202), but more generalised
/// for $`l \leq l_{\mathrm{cart}} = l_x + l_y + l_z`$.
///
/// Let $`\tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r})`$ be a complex solid
/// harmonic Gaussian as defined in Equation 1 of
/// the above reference with $`n = l_{\mathrm{cart}}`$, and let
/// $`g(\alpha, l_x, l_y, l_z, \mathbf{r})`$ be a Cartesian Gaussian as defined in
/// Equation 2 of the above reference.
/// The complex coefficients $`c(l, m_l, n, l_x, l_y, l_z)`$ effect the transformation
///
/// ```math
/// \tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r})
/// = \sum_{l_x+l_y+l_z=l_{\mathrm{cart}}}
///     c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
///     g(\alpha, l_x, l_y, l_z, \mathbf{r})
/// ```
///
/// and are given by
///
/// ```math
/// c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
/// = \frac{\tilde{N}(l_{\mathrm{cart}}, \alpha)}{N(l_x, l_y, l_z, \alpha)}
///     \tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z).
/// ```
///
/// The normalisation constants $`\tilde{N}(l_{\mathrm{cart}}, \alpha)`$
/// and $`N(l_x, l_y, l_z, \alpha)`$ are given in Equations 8 and 9 of
/// the above reference, and for $`n = l_{\mathrm{cart}}`$, this ratio turns out to be
/// independent of $`\alpha`$.
/// The more general form of $`\tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)`$ has been
/// derived to be
///
/// ```math
/// \tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
/// = \frac{\lambda_{\mathrm{cs}}}{2^l l!}
///     \sqrt{\frac{(2l+1)(l-\lvert m_l \rvert)!}{4\pi(l+\lvert m_l \rvert)!}}
///     \sum_{i=0}^{(l-\lvert m_l \rvert)/2}
///         {l\choose i} \frac{(-1)^i(2l-2i)!}{(l-\lvert m_l \rvert -2i)!}\\
///     \sum_{p=0}^{\lvert m_l \rvert} {{\lvert m_l \rvert} \choose p}
///         (\pm \mathbb{i})^{\lvert m_l \rvert-p}
///     \sum_{q=0}^{\Delta l/2} {{\Delta l/2} \choose q} {i \choose j_q}
///     \sum_{k=0}^{j_q} {q \choose t_{pk}} {j_q \choose k}
/// ```
///
/// where $`+\mathbb{i}`$ applies for $`m_l > 0`$, $`-\mathbb{i}`$
/// for $`m_l \le 0`$, $`\lambda_{\mathrm{cs}}`$ is the Condon--Shortley
/// phase given by
///
/// ```math
/// \lambda_{\mathrm{cs}} =
///     \begin{cases}
///         (-1)^{m_l} & m_l > 0 \\
///         1          & m_l \leq 0
///     \end{cases}
/// ```
///
/// and
///
/// ```math
/// t_{pk} = \frac{l_x-p-2k}{2} \quad \textrm{and} \quad
/// j_q = \frac{l_x+l_y-\lvert m_l \rvert-2q}{2}.
/// ```
///
/// If $`\Delta l`$ is odd, $`\tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)`$ must vanish.
/// When  $`t_{pk}`$ or $`j_q`$ is a half-integer, the inner sum in which it is involved
/// evaluates to zero.
///
/// # Arguments
///
/// * `lpureqns` - A tuple of $`(l, m_l)`$ specifying the quantum numbers for the spherical
/// harmonic component of the solid harmonic Gaussian.
/// * `lcartqns` - A tuple of $`(l_x, l_y, l_z)`$ specifying the exponents of the Cartesian
/// components of the Cartesian Gaussian.
/// * `csphase` - If `true`, the Condon--Shortley phase will be used as defined above.
/// If `false`, this phase will be set to unity.
///
/// # Returns
///
/// The complex factor $`c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)`$.
///
/// # Panics
///
/// Panics when any required factorials cannot be computed.
#[allow(clippy::too_many_lines)]
pub fn complexc(lpureqns: (u32, i32), lcartqns: (u32, u32, u32), csphase: bool) -> Complex<f64> {
    let (l, m) = lpureqns;
    let li32 = i32::try_from(l).unwrap_or_else(|_| panic!("Cannot convert `{l}` to `i32`."));
    assert!(
        m.unsigned_abs() <= l,
        "m must be between -l and l (inclusive)."
    );
    let (lx, ly, lz) = lcartqns;
    let lxi32 = i32::try_from(lx).unwrap_or_else(|_| panic!("Cannot convert `{lx}` to `i32`."));
    let lyi32 = i32::try_from(ly).unwrap_or_else(|_| panic!("Cannot convert `{ly}` to `i32`."));
    let lzi32 = i32::try_from(lz).unwrap_or_else(|_| panic!("Cannot convert `{lz}` to `i32`."));
    let lcart = lx + ly + lz;
    let lcarti32 = lxi32 + lyi32 + lzi32;
    let dl = lcarti32 - li32;
    if dl % 2 != 0 {
        return Complex::<f64>::zero();
    }

    let num = f64::from(
        (2 * l + 1)
            * (l - m.unsigned_abs())
                .checked_factorial()
                .unwrap_or_else(|| {
                    panic!(
                        "Unable to compute the factorial of {}.",
                        l - m.unsigned_abs()
                    )
                }),
    );
    let den = 4.0
        * std::f64::consts::PI
        * f64::from(
            (l + m.unsigned_abs())
                .checked_factorial()
                .unwrap_or_else(|| {
                    panic!(
                        "Unable to compute the factorial of {}.",
                        l + m.unsigned_abs()
                    )
                }),
        );
    let mut prefactor =
        1.0 / f64::from(
            2u32.pow(l)
                * l.checked_factorial()
                    .unwrap_or_else(|| panic!("Unable to compute the factorial of {l}.")),
        ) * (num / den).sqrt();
    if csphase && m > 0 {
        prefactor *=
            f64::from((-1i32).pow(u32::try_from(m).expect("Unable to convert `m` to `u32`.")));
    }
    let ntilde = norm_sph_gaussian(lcart, 1.0);
    let n = norm_cart_gaussian(lcartqns, 1.0);

    let si =
        (0..=((l - m.unsigned_abs()).div_euclid(2))).fold(Complex::<f64>::zero(), |acc_si, i| {
            // i <= (l - |m|) / 2
            let ii32 =
                i32::try_from(i).unwrap_or_else(|_| panic!("Cannot convert `{i}` to `i32`."));
            let mut ifactor = combu(l, i)
                .to_f64()
                .expect("Unable to convert a `BigUint` value to `f64`.")
                * BigUint::from(2 * l - 2 * i)
                    .checked_factorial()
                    .unwrap_or_else(|| {
                        panic!("Unable to compute the factorial of {}.", 2 * l - 2 * i)
                    })
                    .to_f64()
                    .unwrap_or_else(|| {
                        panic!(
                            "Unable to convert the factorial of {} to `f64`.",
                            2 * l - 2 * i
                        )
                    })
                / BigUint::from(l - m.unsigned_abs() - 2 * i)
                    .checked_factorial()
                    .unwrap_or_else(|| {
                        panic!(
                            "Unable to compute the factorial of {}.",
                            l - m.unsigned_abs() - 2 * i
                        )
                    })
                    .to_f64()
                    .unwrap_or_else(|| {
                        panic!(
                            "Unable to convert the factorial of {} to `f64`.",
                            l - m.unsigned_abs() - 2 * i
                        )
                    });
            if i % 2 == 1 {
                ifactor *= -1.0;
            };
            let sp = (0..=(m.unsigned_abs())).fold(Complex::<f64>::zero(), |acc_sp, p| {
                let pi32 =
                    i32::try_from(p).unwrap_or_else(|_| panic!("Cannot convert `{p}` to `i32`."));
                let pfactor = if m > 0 {
                    combu(m.unsigned_abs(), p)
                        .to_f64()
                        .expect("Unable to convert a `BigUint` value to `f64`.")
                        * Complex::<f64>::i().powu(m.unsigned_abs() - p)
                } else {
                    combu(m.unsigned_abs(), p)
                        .to_f64()
                        .expect("Unable to convert a `BigUint` value to `f64`.")
                        * (-1.0 * Complex::<f64>::i()).powu(m.unsigned_abs() - p)
                };
                let sq = (0..=(dl.div_euclid(2))).fold(Complex::<f64>::zero(), |acc_sq, q| {
                    let jq_num = lxi32 + lyi32 - 2 * q - m.abs();
                    if jq_num.rem_euclid(2) == 0 {
                        let jq = jq_num.div_euclid(2);
                        let qfactor = (comb(dl.div_euclid(2), q) * comb(ii32, jq))
                            .to_f64()
                            .expect("Unable to convert a `BigUint` value to `f64`.");
                        let sk = (0..=jq).fold(Complex::<f64>::zero(), |acc_sk, k| {
                            let tpk_num = lxi32 - pi32 - 2 * k;
                            if tpk_num.rem_euclid(2) == 0 {
                                let tpk = tpk_num.div_euclid(2);
                                let kfactor = (comb(q, tpk) * comb(jq, k))
                                    .to_f64()
                                    .expect("Unable to convert a `BigUint` value to `f64`.");
                                acc_sk + kfactor
                            } else {
                                acc_sk
                            }
                        });
                        acc_sq + qfactor * sk
                    } else {
                        acc_sq
                    }
                });
                acc_sp + pfactor * sq
            });
            acc_si + ifactor * sp
        });
    (ntilde / n) * prefactor * si
}

/// Calculates the overlap between two normalised Cartesian Gaussians of the same order and radial
/// width, as given in Equation 19 of Schlegel, H. B. & Frisch, M. J. Transformation between
/// Cartesian and pure spherical harmonic Gaussians. *International Journal of Quantum Chemistry*
/// **54**, 83–87 (1995), [DOI](https://doi.org/10.1002/qua.560540202).
///
/// # Arguments
///
/// * `lcartqns1` - A tuple of $`(l_x, l_y, l_z)`$ specifying the exponents of the Cartesian
/// components of the first Cartesian Gaussian.
/// * `lcartqns2` - A tuple of $`(l_x, l_y, l_z)`$ specifying the exponents of the Cartesian
/// components of the first Cartesian Gaussian.
///
/// # Returns
///
/// The overlap between the two specified normalised Cartesian Gaussians.
fn cartov(lcartqns1: (u32, u32, u32), lcartqns2: (u32, u32, u32)) -> f64 {
    let (lx1, ly1, lz1) = lcartqns1;
    let (lx2, ly2, lz2) = lcartqns2;
    let lcart1 = lx1 + ly1 + lz1;
    let lcart2 = lx2 + ly2 + lz2;
    assert_eq!(
        lcart1, lcart2,
        "Only Cartesian Gaussians of the same order are supported."
    );

    if (lx1 + lx2).rem_euclid(2) == 0
        && (ly1 + ly2).rem_euclid(2) == 0
        && (lz1 + lz2).rem_euclid(2) == 0
    {
        let num1 = (BigUint::from(lx1 + lx2)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", lx1 + lx2))
            * BigUint::from(ly1 + ly2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", ly1 + ly2))
            * BigUint::from(lz1 + lz2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", lz1 + lz2)))
        .to_f64()
        .expect("Unable to convert a `BigUint` value to `f64`.");

        let den1 = (BigUint::from((lx1 + lx2).div_euclid(2))
            .checked_factorial()
            .unwrap_or_else(|| {
                panic!(
                    "Unable to compute the factorial of {}.",
                    (lx1 + lx2).div_euclid(2)
                )
            })
            * BigUint::from((ly1 + ly2).div_euclid(2))
                .checked_factorial()
                .unwrap_or_else(|| {
                    panic!(
                        "Unable to compute the factorial of {}.",
                        (ly1 + ly2).div_euclid(2)
                    )
                })
            * BigUint::from((lz1 + lz2).div_euclid(2))
                .checked_factorial()
                .unwrap_or_else(|| {
                    panic!(
                        "Unable to compute the factorial of {}.",
                        (lz1 + lz2).div_euclid(2)
                    )
                }))
        .to_f64()
        .expect("Unable to convert a `BigUint` value to `f64`.");

        let num2 = (BigUint::from(lx1)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {lx1}."))
            * BigUint::from(ly1)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {ly1}."))
            * BigUint::from(lz1)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {lz1}."))
            * BigUint::from(lx2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {lx2}."))
            * BigUint::from(ly2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {ly2}."))
            * BigUint::from(lz2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {lz2}.")))
        .to_f64()
        .expect("Unable to convert a `BigUint` value to `f64`.");

        let den2 = (BigUint::from(2 * lx1)
            .checked_factorial()
            .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * lx1))
            * BigUint::from(2 * ly1)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * ly1))
            * BigUint::from(2 * lz1)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * lz1))
            * BigUint::from(2 * lx2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * lx2))
            * BigUint::from(2 * ly2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * ly2))
            * BigUint::from(2 * lz2)
                .checked_factorial()
                .unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", 2 * lz2)))
        .to_f64()
        .expect("Unable to convert a `BigUint` value to `f64`.");

        (num1 / den1) * (num2 / den2).sqrt()
    } else {
        0.0
    }
}

/// Computes the inverse complex coefficients $`c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})`$
/// based on Equation 18 of Schlegel, H. B. & Frisch, M. J. Transformation between
/// Cartesian and pure spherical harmonic Gaussians. *International Journal of Quantum Chemistry*
/// **54**, 83–87 (1995), [DOI](https://doi.org/10.1002/qua.560540202), but more generalised for
/// $`l \leq l_{\mathrm{cart}} = l_x + l_y + l_z`$.
///
/// Let $`\tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r})`$ be a complex solid
/// harmonic Gaussian as defined in Equation 1 of the above reference with
/// $`n = l_{\mathrm{cart}}`$, and let $`g(\alpha, l_x, l_y, l_z, \mathbf{r})`$ be a Cartesian
/// Gaussian as defined in Equation 2 of the above reference. The inverse complex coefficients
/// $`c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})`$ effect the inverse transformation
///
/// ```math
/// g(\alpha, l_x, l_y, l_z, \mathbf{r})
/// = \sum_{l \le l_{\mathrm{cart}} = l_x+l_y+l_z} \sum_{m_l = -l}^{l}
///     c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})
///     \tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r}).
/// ```
///
/// # Arguments
///
/// * `lcartqns` - A tuple of $`(l_x, l_y, l_z)`$ specifying the exponents of the Cartesian
/// components of the Cartesian Gaussian.
/// * `lpureqns` - A tuple of $`(l, m_l)`$ specifying the quantum numbers for the spherical
/// harmonic component of the solid harmonic Gaussian.
/// * `csphase` - If `true`, the Condon--Shortley phase will be used as defined in
/// [`complexc`]. If `false`, this phase will be set to unity.
///
/// # Returns
///
/// $`c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})`$.
pub fn complexcinv(lcartqns: (u32, u32, u32), lpureqns: (u32, i32), csphase: bool) -> Complex<f64> {
    let (lx, ly, lz) = lcartqns;
    let lcart = lx + ly + lz;
    let mut cinv = Complex::<f64>::zero();
    for lx2 in 0..=lcart {
        for ly2 in 0..=(lcart - lx2) {
            let lz2 = lcart - lx2 - ly2;
            cinv += cartov(lcartqns, (lx2, ly2, lz2))
                * complexc(lpureqns, (lx2, ly2, lz2), csphase).conj();
        }
    }
    cinv
}

/// Obtains the transformation matrix $`\boldsymbol{\Upsilon}^{(l)}`$ allowing complex spherical
/// harmonics to be expressed as linear combinations of real spherical harmonics.
///
/// Let $`Y_{lm}`$ be a real spherical harmonic of degree $`l`$. Then, a complex spherical
/// harmonic of degree $`l`$ and order $`m`$ is given by
///
/// ```math
/// Y_l^m =
///     \begin{cases}
///         \frac{\lambda_{\mathrm{cs}}}{\sqrt{2}}
///         \left(Y_{l\lvert m \rvert}
///               - \mathbb{i} Y_{l,-\lvert m \rvert}\right)
///         & \mathrm{if}\ m < 0 \\
///         Y_{l0} & \mathrm{if}\ m = 0 \\
///         \frac{\lambda_{\mathrm{cs}}}{\sqrt{2}}
///         \left(Y_{l\lvert m \rvert}
///               + \mathbb{i} Y_{l,-\lvert m \rvert}\right)
///         & \mathrm{if}\ m > 0 \\
///     \end{cases}
/// ```
///
/// where $`\lambda_{\mathrm{cs}}`$ is the Condon--Shortley phase as defined in [`complexc`].
/// The linear combination coefficients can then be gathered into a square matrix
/// $`\boldsymbol{\Upsilon}^{(l)}`$ of dimensions $`(2l+1)\times(2l+1)`$ such that
///
/// ```math
///     Y_l^m = \sum_{m'} Y_{lm'} \Upsilon^{(l)}_{m'm}.
/// ```
///
/// # Arguments
///
/// * `l` - The spherical harmonic degree.
/// * `csphase` - If `true`, $`\lambda_{\mathrm{cs}}`$ is as defined in [`complexc`]. If `false`,
/// $`\lambda_{\mathrm{cs}} = 1`$.
/// * `pureorder` - A [`PureOrder`] struct giving the ordering of the components of the pure
/// Gaussians.
///
/// # Returns
///
/// The $`\boldsymbol{\Upsilon}^{(l)}`$ matrix.
pub fn sh_c2r_mat(l: u32, csphase: bool, pureorder: &PureOrder) -> Array2<Complex<f64>> {
    assert_eq!(pureorder.lpure, l, "Mismatched pure ranks.");
    let lusize = l as usize;
    let mut upmat = Array2::<Complex<f64>>::zeros((2 * lusize + 1, 2 * lusize + 1));
    let po_il = PureOrder::increasingm(l);
    for &mcomplex in po_il.iter() {
        let absmreal = mcomplex.unsigned_abs() as usize;
        match mcomplex.cmp(&0) {
            Ordering::Less => {
                // Python-equivalent:
                // upmat[-absmreal + l, mcomplex + l] = -1.0j / np.sqrt(2)
                // upmat[+absmreal + l, mcomplex + l] = 1.0 / np.sqrt(2)
                // mcomplex = -absmreal
                upmat[(lusize - absmreal, lusize - absmreal)] =
                    Complex::<f64>::new(0.0, -1.0 / 2.0f64.sqrt());
                upmat[(lusize + absmreal, lusize - absmreal)] =
                    Complex::<f64>::new(1.0 / 2.0f64.sqrt(), 0.0);
            }
            Ordering::Equal => {
                upmat[(lusize, lusize)] = Complex::<f64>::from(1.0);
            }
            Ordering::Greater => {
                let lcs = if csphase {
                    f64::from((-1i32).pow(
                        u32::try_from(mcomplex).expect("Unable to convert `mcomplex` to `u32`."),
                    ))
                } else {
                    1.0
                };
                // Python-equivalent:
                // upmat[-absmreal + l, mcomplex + l] = lcs * 1.0j / np.sqrt(2)
                // upmat[+absmreal + l, mcomplex + l] = lcs * 1.0 / np.sqrt(2)
                // mcomplex = absmreal
                upmat[(lusize - absmreal, lusize + absmreal)] =
                    lcs * Complex::<f64>::new(0.0, 1.0 / 2.0f64.sqrt());
                upmat[(lusize + absmreal, lusize + absmreal)] =
                    lcs * Complex::<f64>::new(1.0 / 2.0f64.sqrt(), 0.0);
            }
        }
    }

    // upmat is always in increasing-m order. We now permute, if required.
    if *pureorder != po_il {
        let perm = pureorder.get_perm_of(&po_il).expect(
            "Permutation to obtain `pureorder` from the increasing-m order could not be found.",
        );
        let image = perm.image();
        upmat.select(Axis(0), &image).select(Axis(1), &image)
    } else {
        upmat
    }
}

/// Obtains the matrix $`\boldsymbol{\Upsilon}^{(l)\dagger}`$ allowing real spherical harmonics
/// to be expressed as linear combinations of complex spherical harmonics.
///
/// Let $`Y_l^m`$ be a complex spherical harmonic of degree $`l`$ and order $`m`$.
/// Then, a real degree-$`l`$ spherical harmonic $`Y_{lm}`$ can be defined as
///
/// ```math
/// Y_{lm} =
///     \begin{cases}
///         \frac{\mathbb{i}}{\sqrt{2}}
///         \left(Y_l^{-\lvert m \rvert}
///               - \lambda'_{\mathrm{cs}} Y_l^{\lvert m \rvert}\right)
///         & \mathrm{if}\ m < 0 \\
///         Y_l^0 & \mathrm{if}\ m = 0 \\
///         \frac{1}{\sqrt{2}}
///         \left(Y_l^{-\lvert m \rvert}
///               + \lambda'_{\mathrm{cs}} Y_l^{\lvert m \rvert}\right)
///         & \mathrm{if}\ m > 0 \\
///     \end{cases}
/// ```
///
/// where $`\lambda'_{\mathrm{cs}} = (-1)^{\lvert m \rvert}`$ if the Condon--Shortley phase as
/// defined in [`complexc`] is employed for the complex spherical harmonics, and
/// $`\lambda'_{\mathrm{cs}} = 1`$ otherwise. The linear combination coefficients turn out to be
/// given by the elements of matrix $`\boldsymbol{\Upsilon}^{(l)\dagger}`$ of dimensions
/// $`(2l+1)\times(2l+1)`$ such that
///
/// ```math
///     Y_{lm} = \sum_{m'} Y_l^{m'} [\Upsilon^{(l)\dagger}]_{m'm}.
/// ```
///
/// It is obvious from the orthonormality of $`Y_{lm}`$ and $`Y_l^m`$ that
/// $`\boldsymbol{\Upsilon}^{(l)\dagger} = [\boldsymbol{\Upsilon}^{(l)}]^{-1}`$ where
/// $`\boldsymbol{\Upsilon}^{(l)}`$ is defined in [`sh_c2r_mat`].
///
/// # Arguments
///
/// * `l` - The spherical harmonic degree.
/// * `csphase` - If `true`, $`\lambda_{\mathrm{cs}}`$ is as defined in [`complexc`]. If `false`,
/// $`\lambda_{\mathrm{cs}} = 1`$.
/// * `pureorder` - A [`PureOrder`] struct giving the ordering of the components of the pure
/// Gaussians.
///
/// # Returns
///
/// The $`\boldsymbol{\Upsilon}^{(l)\dagger}`$ matrix.
pub fn sh_r2c_mat(l: u32, csphase: bool, pureorder: &PureOrder) -> Array2<Complex<f64>> {
    let mut mat = sh_c2r_mat(l, csphase, pureorder).t().to_owned();
    mat.par_mapv_inplace(|x| x.conj());
    mat
}

/// Obtains the matrix $`\mathbf{U}^{(l_{\mathrm{cart}}, l)}`$ containing linear combination
/// coefficients of Cartesian Gaussians in the expansion of a complex solid harmonic Gaussian,
/// *i.e.*, briefly,
///
/// ```math
/// \tilde{\mathbf{g}}^{\mathsf{T}}(l)
///     = \mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
///     \ \mathbf{U}^{(l_{\mathrm{cart}}, l)}.
/// ```
///
/// Let $`\tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})`$ be a complex solid harmonic
/// Gaussian as defined in Equation 1 of Schlegel, H. B. & Frisch, M. J. Transformation between
/// Cartesian and pure spherical harmonic Gaussians. *International Journal of Quantum Chemistry*
/// **54**, 83–87 (1995), [DOI](https://doi.org/10.1002/qua.560540202) with
/// $`n = l_{\mathrm{cart}}`$, and let $`g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})`$ be a
/// Cartesian Gaussian as defined in Equation 2 of the above reference.
/// Here, $`\lambda`$ is a single index labelling a complex solid harmonic Gaussian of spherical
/// harmonic degree $`l`$ and order $`m_l`$, and $`\lambda_{\mathrm{cart}}`$ a single index
/// labelling a Cartesian Gaussian of degrees $`(l_x, l_y, l_z)`$ such that
/// $`l_x + l_y + l_z = l_{\mathrm{cart}}`$. We can then write
///
/// ```math
/// \tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
/// = \sum_{\lambda_{\mathrm{cart}}}
///     g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
///     U^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda}
/// ```
///
/// where $`U^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda}`$
/// is given by the complex coefficients
///
/// ```math
/// U^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda} =
///     c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
/// ```
///
/// defined in [`complexc`].
///
/// $`\mathbf{U}^{(l_{\mathrm{cart}}, l)}`$ has dimensions
/// $`\frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2) \times (2l+1)`$ and contains only
/// zero elements if $`l`$ and $`l_{\mathrm{cart}}`$ have different parities.
/// It can be verified that
/// $`\mathbf{V}^{(l,l_{\mathrm{cart}})}
/// \ \mathbf{U}^{(l_{\mathrm{cart}}, l)} = \boldsymbol{I}_{2l+1}`$, where
/// $`\mathbf{V}^{(l,l_{\mathrm{cart}})}`$ is given in [`sh_cart2cl_mat`].
///
/// # Arguments
///
/// * `lcart` - The total Cartesian degree for the Cartesian Gaussians and
///  also for the radial part of the solid harmonic Gaussian.
/// * `l` - The degree of the complex spherical harmonic factor in the solid
///  harmonic Gaussian.
/// * `cartorder` - A [`CartOrder`] struct giving the ordering of the components of the Cartesian
/// Gaussians.
/// * `csphase` - Set to `true` to use the Condon--Shortley phase in the calculations of the $`c`$
/// coefficients. See [`complexc`] for more details.
/// * `pureorder` - A [`PureOrder`] struct giving the ordering of the components of the pure
/// Gaussians.
///
/// # Returns
///
/// The $`\mathbf{U}^{(l_{\mathrm{cart}}, l)}`$ matrix.
pub fn sh_cl2cart_mat(
    lcart: u32,
    l: u32,
    cartorder: &CartOrder,
    csphase: bool,
    pureorder: &PureOrder,
) -> Array2<Complex<f64>> {
    assert_eq!(cartorder.lcart, lcart, "Mismatched Cartesian ranks.");
    assert_eq!(pureorder.lpure, l, "Mismatched pure ranks.");
    let mut umat = Array2::<Complex<f64>>::zeros((
        ((lcart + 1) * (lcart + 2)).div_euclid(2) as usize,
        2 * l as usize + 1,
    ));
    for (i, &m) in pureorder.iter().enumerate() {
        for (icart, &lcartqns) in cartorder.iter().enumerate() {
            umat[(icart, i)] = complexc((l, m), lcartqns, csphase);
        }
    }
    umat
}

/// Obtains the matrix $`\mathbf{V}^{(l, l_{\mathrm{cart}})}`$ containing linear combination
/// coefficients of complex solid harmonic Gaussians of a specific degree in the expansion of
/// Cartesian Gaussians, *i.e.*, briefly,
///
/// ```math
/// \mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
///     = \tilde{\mathbf{g}}^{\mathsf{T}}(l)
///     \ \mathbf{V}^{(l, l_{\mathrm{cart}})}.
/// ```
///
/// Let $`\tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})`$ be a complex solid harmonic
/// Gaussian as defined in Equation 1 of Schlegel, H. B. & Frisch, M. J. Transformation between
/// Cartesian and pure spherical harmonic Gaussians. *International Journal of Quantum Chemistry*
/// **54**, 83–87 (1995), [DOI](https://doi.org/10.1002/qua.560540202) with
/// $`n = l_{\mathrm{cart}}`$, and let $`g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})`$ be a
/// Cartesian Gaussian as defined in Equation 2 of the above reference.  Here, $`\lambda`$ is a
/// single index labelling a complex solid harmonic Gaussian of spherical harmonic degree $`l`$
/// and order $`m_l`$, and $`\lambda_{\mathrm{cart}}`$ a single index labelling a Cartesian
/// Gaussian of degrees $`(l_x, l_y, l_z)`$ such that $`l_x + l_y + l_z = l_{\mathrm{cart}}`$.
/// We can then write
///
/// ```math
/// g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
/// = \sum_{\substack{\lambda\\ l \leq l_{\mathrm{cart}}}}
///     \tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
///     V^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}}
/// ```
///
/// where $`V^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}}`$ is given by the inverse
/// complex coefficients
///
/// ```math
/// V^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}} =
///     c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})
/// ```
///
/// defined in [`complexcinv`].
///
/// We can order the rows $`\lambda`$ of $`\mathbf{V}^{(l_{\mathrm{cart}})}`$ that have the same
/// $`l`$ into rectangular blocks of dimensions
/// $`(2l+1) \times \frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2)`$
/// which give contributions from complex solid harmonic Gaussians of a particular degree $`l`$.
/// We denote these blocks $`\mathbf{V}^{(l, l_{\mathrm{cart}})}`$.
/// They contain only zero elements if $`l`$ and $`l_{\mathrm{cart}}`$ have different parities.
///
/// # Arguments
///
/// * `l` - The degree of the complex spherical harmonic factor in the solid
///  harmonic Gaussian.
/// * `lcart` - The total Cartesian degree for the Cartesian Gaussians and
///  also for the radial part of the solid harmonic Gaussian.
/// * `cartorder` - A [`CartOrder`] struct giving the ordering of the components of the Cartesian
/// Gaussians.
/// * `csphase` - Set to `true` to use the Condon--Shortley phase in the calculations of the
/// $`c^{-1}`$ coefficients. See [`complexc`] and [`complexcinv`] for more details.
/// * `pureorder` - A [`PureOrder`] struct giving the ordering of the components of the pure
/// Gaussians.
///
/// # Returns
///
/// The $`\mathbf{V}^{(l, l_{\mathrm{cart}})}`$ block.
pub fn sh_cart2cl_mat(
    l: u32,
    lcart: u32,
    cartorder: &CartOrder,
    csphase: bool,
    pureorder: &PureOrder,
) -> Array2<Complex<f64>> {
    assert_eq!(pureorder.lpure, l, "Mismatched pure ranks.");
    assert_eq!(cartorder.lcart, lcart, "Mismatched Cartesian ranks.");
    let mut vmat = Array2::<Complex<f64>>::zeros((
        2 * l as usize + 1,
        ((lcart + 1) * (lcart + 2)).div_euclid(2) as usize,
    ));
    for (icart, &lcartqns) in cartorder.iter().enumerate() {
        for (i, &m) in pureorder.iter().enumerate() {
            vmat[(i, icart)] = complexcinv(lcartqns, (l, m), csphase);
        }
    }
    vmat
}

/// Obtain the matrix $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ containing linear combination
/// coefficients of Cartesian Gaussians in the expansion of a real solid harmonic Gaussian, *i.e.*,
/// briefly,
///
/// ```math
/// \bar{\mathbf{g}}^{\mathsf{T}}(l)
///     = \mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
///     \ \mathbf{W}^{(l_{\mathrm{cart}}, l)}.
/// ```
///
/// Let $`\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})`$ be
/// a real solid harmonic Gaussian defined in a similar manner to Equation 1 of Schlegel, H. B.
/// & Frisch, M. J. Transformation between Cartesian and pure spherical harmonic Gaussians.
/// *International Journal of Quantum Chemistry* **54**, 83–87 (1995),
/// [DOI](https://doi.org/10.1002/qua.560540202) with $`n = l_{\mathrm{cart}}`$ but with real
/// rather than complex spherical harmonic factors, and let
/// $`g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})`$ be a Cartesian Gaussian as defined in
/// Equation 2 of the above reference. Here, $`\lambda`$ is a single index labelling a complex
/// solid harmonic Gaussian of spherical harmonic degree $`l`$ and order $`m_l`$, and
/// $`\lambda_{\mathrm{cart}}`$ a single index labelling a Cartesian Gaussian of degrees
/// $`(l_x, l_y, l_z)`$ such that $`l_x + l_y + l_z = l_{\mathrm{cart}}`$. We can then write
///
/// ```math
/// \bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
/// = \sum_{\lambda_{\mathrm{cart}}}
///     g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
///     W^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda}.
/// ```
///
/// $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ is given by
///
/// ```math
/// \mathbf{W}^{(l_{\mathrm{cart}}, l)}
/// = \mathbf{U}^{(l_{\mathrm{cart}}, l)}
///   \boldsymbol{\Upsilon}^{(l)\dagger},
/// ```
///
/// where $`\boldsymbol{\Upsilon}^{(l)\dagger}`$ is defined in [`sh_r2c_mat`] and
/// $`\mathbf{U}^{(l_{\mathrm{cart}}, l)}`$ in [`sh_cl2cart_mat`].
/// $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ must be real.
/// $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ has dimensions
/// $`\frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2) \times (2l+1)`$ and contains only zero
/// elements if $`l`$ and $`l_{\mathrm{cart}}`$ have different parities. It can be verified that
/// $`\mathbf{X}^{(l,l_{\mathrm{cart}})}
/// \ \mathbf{W}^{(l_{\mathrm{cart}}, l)} = \boldsymbol{I}_{2l+1}`$, where
/// $`\mathbf{X}^{(l,l_{\mathrm{cart}})}`$ is given in
/// [`sh_cart2rl_mat`].
///
/// # Arguments
///
/// * lcart - The total Cartesian degree for the Cartesian Gaussians and
///  also for the radial part of the solid harmonic Gaussian.
/// * l - The degree of the complex spherical harmonic factor in the solid
///  harmonic Gaussian.
/// * cartorder - A [`CartOrder`] struct giving the ordering of the components of the Cartesian
/// Gaussians.
/// * `csphase` - Set to `true` to use the Condon--Shortley phase in the calculations of the $`c`$
/// coefficients. See [`complexc`] for more details.
/// * `pureorder` - A [`PureOrder`] struct giving the ordering of the components of the pure
/// Gaussians.
///
/// # Returns
///
/// The $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ matrix.
pub fn sh_rl2cart_mat(
    lcart: u32,
    l: u32,
    cartorder: &CartOrder,
    csphase: bool,
    pureorder: &PureOrder,
) -> Array2<f64> {
    assert_eq!(cartorder.lcart, lcart, "Mismatched Cartesian ranks.");
    assert_eq!(pureorder.lpure, l, "Mismatched pure ranks.");
    let upmatdagger = sh_r2c_mat(l, csphase, pureorder);
    let umat = sh_cl2cart_mat(lcart, l, cartorder, csphase, pureorder);
    let wmat = umat.dot(&upmatdagger);
    assert!(
        wmat.iter()
            .all(|x| approx::relative_eq!(x.im, 0.0, max_relative = 1e-7, epsilon = 1e-7)),
        "wmat is not entirely real."
    );
    wmat.map(|x| x.re)
}

/// Obtains the real matrix $`\mathbf{X}^{(l, l_{\mathrm{cart}})}`$ containing linear combination
/// coefficients of real solid harmonic Gaussians of a specific degree in the expansion of
/// Cartesian Gaussians, *i.e.*, briefly,
///
/// ```math
/// \mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
///     = \bar{\mathbf{g}}^{\mathsf{T}}(l)
///     \ \mathbf{X}^{(l, l_{\mathrm{cart}})}.
/// ```
///
/// Let $`\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})`$ be a real solid harmonic
/// Gaussian defined in a similar manner to Equation 1 of Schlegel, H. B. & Frisch, M. J.
/// Transformation between Cartesian and pure spherical harmonic Gaussians. *International
/// Journal of Quantum Chemistry* **54**, 83–87 (1995),
/// [DOI](https://doi.org/10.1002/qua.560540202)
/// with $`n = l_{\mathrm{cart}}`$, but with real rather than complex spherical harmonic factors,
/// and let $`g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})`$ be a Cartesian Gaussian as defined
/// in Equation 2 of the above reference.  Here, $`\lambda`$ is a single index labelling a real
/// solid harmonic Gaussian of spherical harmonic degree $`l`$ and real order $`m_l`$, and
/// $`\lambda_{\mathrm{cart}}`$ a single index labelling a Cartesian Gaussian of degrees
/// $`(l_x, l_y, l_z)`$ such that $`l_x + l_y + l_z = l_{\mathrm{cart}}`$.
/// We can then write
///
/// ```math
/// g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
/// = \sum_{\substack{\lambda\\ l \leq l_{\mathrm{cart}}}}
///     \bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
///     X^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}}.
/// ```
///
/// We can order the rows $`\lambda`$ of $`\mathbf{X}^{(l_{\mathrm{cart}})}`$ that have the same
/// $`l`$ into rectangular blocks of dimensions
/// $`(2l+1) \times \frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2)`$.
/// We denote these blocks $`\mathbf{X}^{(l, l_{\mathrm{cart}})}`$ which are given by
///
/// ```math
/// \mathbf{X}^{(l, l_{\mathrm{cart}})}
/// = \boldsymbol{\Upsilon}^{(l)} \mathbf{V}^{(l, l_{\mathrm{cart}})},
/// ```
///
/// where $`\boldsymbol{\Upsilon}^{(l)}`$ is defined in
/// [`sh_c2r_mat`] and $`\boldsymbol{V}^{(l, l_{\mathrm{cart}})}`$ in [`sh_cart2cl_mat`].
/// $`\mathbf{X}^{(l, l_{\mathrm{cart}})}`$ must be real.
///
/// # Arguments
///
/// * `l` - The degree of the complex spherical harmonic factor in the solid
///  harmonic Gaussian.
/// * `lcart` - The total Cartesian degree for the Cartesian Gaussians and
///  also for the radial part of the solid harmonic Gaussian.
/// * `cartorder` - A [`CartOrder`] struct giving the ordering of the components of the Cartesian
/// Gaussians.
/// * `csphase` - Set to `true` to use the Condon--Shortley phase in the calculations of the
/// $`c^{-1}`$ coefficients. See [`complexc`] and [`complexcinv`] for more details.
/// * `pureorder` - A [`PureOrder`] struct giving the ordering of the components of the pure
/// Gaussians.
///
/// # Returns
///
/// The $`\mathbf{X}^{(l, l_{\mathrm{cart}})}`$ block.
pub fn sh_cart2rl_mat(
    l: u32,
    lcart: u32,
    cartorder: &CartOrder,
    csphase: bool,
    pureorder: &PureOrder,
) -> Array2<f64> {
    assert_eq!(cartorder.lcart, lcart, "Mismatched Cartesian ranks.");
    assert_eq!(pureorder.lpure, l, "Mismatched pure ranks.");
    let upmat = sh_c2r_mat(l, csphase, pureorder);
    let vmat = sh_cart2cl_mat(l, lcart, cartorder, csphase, pureorder);
    let xmat = upmat.dot(&vmat);
    assert!(
        xmat.iter()
            .all(|x| approx::relative_eq!(x.im, 0.0, max_relative = 1e-7, epsilon = 1e-7)),
        "xmat is not entirely real."
    );
    xmat.map(|x| x.re)
}

/// Returns a list of $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ for
/// $`l_{\mathrm{cart}} \ge l \ge 0`$ and $`l \equiv l_{\mathrm{cart}} \mod 2`$.
///
/// $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ is defined in [`sh_rl2cart_mat`].
///
/// # Arguments
///
/// * `lcart` - The total Cartesian degree for the Cartesian Gaussians and
///  also for the radial part of the solid harmonic Gaussian.
/// * `cartorder` - A [`CartOrder`] struct giving the ordering of the components of the Cartesian
/// Gaussians.
/// * `csphase` - Set to `true` to use the Condon--Shortley phase in the calculations of the
/// $`c`$ coefficients. See [`complexc`] for more details.
/// * `pureorder` - A closure to generate a [`PureOrder`] struct giving the ordering of the
/// components of the pure Gaussians for a particular value of `l`.
///
/// # Returns
///
/// A vector of $`\mathbf{W}^{(l_{\mathrm{cart}}, l)}`$ matrices with
/// $`l_{\mathrm{cart}} \ge l \ge 0`$ and $`l \equiv l_{\mathrm{cart}} \mod 2`$ in decreasing
/// $`l`$ order.
pub fn sh_r2cart(
    lcart: u32,
    cartorder: &CartOrder,
    csphase: bool,
    pureorder: fn(u32) -> PureOrder,
) -> Vec<Array2<f64>> {
    assert_eq!(cartorder.lcart, lcart, "Mismatched Cartesian ranks.");
    let lrange = if lcart.rem_euclid(2) == 0 {
        #[allow(clippy::range_plus_one)]
        (0..lcart + 1).step_by(2).rev()
    } else {
        #[allow(clippy::range_plus_one)]
        (1..lcart + 1).step_by(2).rev()
    };
    lrange
        .map(|l| sh_rl2cart_mat(lcart, l, cartorder, csphase, &pureorder(l)))
        .collect()
}

/// Returns a list of $`\mathbf{X}^{(l, l_{\mathrm{cart}})}`$ for
/// $`l_{\mathrm{cart}} \ge l \ge 0`$ and $`l \equiv l_{\mathrm{cart}} \mod 2`$.
///
/// $`\mathbf{X}^{(l, l_{\mathrm{cart}})}`$ is defined in [`sh_cart2rl_mat`].
///
/// # Arguments
///
/// * `lcart` - The total Cartesian degree for the Cartesian Gaussians and
///  also for the radial part of the solid harmonic Gaussian.
/// * `cartorder` - A [`CartOrder`] struct giving the ordering of the components of the Cartesian
/// Gaussians.
/// * `csphase` - Set to `true` to use the Condon--Shortley phase in the calculations of the
/// $`c^{-1}`$ coefficients. See [`complexc`] and [`complexcinv`] for more details.
/// * `pureorder` - A closure to generate a [`PureOrder`] struct giving the ordering of the
/// components of the pure Gaussians for a particular value of `l`.
///
/// # Returns
///
/// A vector of $`\mathbf{X}^{(l, l_{\mathrm{cart}})}`$ matrices with
/// $`l_{\mathrm{cart}} \ge l \ge 0`$ and $`l \equiv l_{\mathrm{cart}} \mod 2`$ in decreasing
/// $`l`$ order.
pub fn sh_cart2r(
    lcart: u32,
    cartorder: &CartOrder,
    csphase: bool,
    pureorder: fn(u32) -> PureOrder,
) -> Vec<Array2<f64>> {
    assert_eq!(cartorder.lcart, lcart, "Mismatched Cartesian ranks.");
    let lrange = if lcart.rem_euclid(2) == 0 {
        #[allow(clippy::range_plus_one)]
        (0..lcart + 1).step_by(2).rev()
    } else {
        #[allow(clippy::range_plus_one)]
        (1..lcart + 1).step_by(2).rev()
    };
    lrange
        .map(|l| sh_cart2rl_mat(l, lcart, cartorder, csphase, &pureorder(l)))
        .collect()
}