1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
//! Three-dimensional rotations of spherical harmonics.
use std::cmp::Ordering;
use approx;
use nalgebra::{Rotation3, Unit, Vector3};
use ndarray::{Array2, Axis, ShapeBuilder};
use num_traits::ToPrimitive;
#[cfg(test)]
#[path = "sh_rotation_3d_tests.rs"]
mod sh_rotation_3d_tests;
/// Returns the generalised Kronecker delta $`\delta_{ij}`$ for any $`i`$ and $`j`$ that have a
/// partial equivalence relation.
///
/// # Returns
///
/// `0` if $`i \ne j`$, `1` if $`i = j`$.
fn kdelta<T: PartialEq>(i: &T, j: &T) -> u8 {
u8::from(i == j)
}
/// Returns the function $`_iP^l_{\mu m'}`$ as defined in Table 2 of Ivanic, J. & Ruedenberg, K.
/// Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion.
/// *The Journal of Physical Chemistry* **100**, 9099–9100 (1996),
/// [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `i` - The index $`i`$ satisfying $`-1 \le i \le 1`$.
/// * `l` - The spherical harmonic order $`l \ge 2`$.
/// * `mu` - The index $`\mu`$ satisfying $`-l+1 \le \mu \le l-1`$.
/// * `mdash` - The index $`m'`$ satisfying $`-l \le m' \le l`$.
/// * `rmat` - The representation matrix of the transformation of interest in the basis of
/// coordinate *functions* $`(y, z, x)`$, which are isosymmetric to the real spherical harmonics
/// $`(Y_{1, -1}, Y_{1, 0}, Y_{1, 1})`$.
/// * `rlm1` - The representation matrix of the transformation of interest in the basis of the real
/// spherical harmonics $`Y_{l-1, m}`$ ordered by increasing $`m`$.
///
/// # Returns
///
/// The value of $`_iP^l_{\mu m'}`$.
fn func_p(i: i8, l: u32, mu: i64, mdash: i64, rmat: &Array2<f64>, rlm1: &Array2<f64>) -> f64 {
assert!(i.abs() <= 1, "`i` must be between -1 and 1 (inclusive).");
assert!(l >= 2, "`l` must be at least 2.");
let li64 = i64::from(l);
assert!(
mu.abs() < li64,
"Index `mu` = {mu} lies outside [{}, {}].",
-(li64) + 1,
l - 1
);
assert!(
mdash.abs() <= li64,
"Index `mdash` = {mdash} lies outside [-{l}, {l}].",
);
assert_eq!(rmat.shape(), &[3, 3], "`rmat` must be a 3 × 3 matrix.");
assert_eq!(
rlm1.shape(),
&[2 * l as usize - 1, 2 * l as usize - 1],
"`rlm1` must be a {} × {} matrix.",
2 * l as usize - 1,
2 * l as usize - 1
);
let ii = usize::try_from(i + 1).expect("Unable to convert `i + 1` to `usize`.");
let mui =
usize::try_from(mu + (li64 - 1)).expect("Unable to convert `mu + (l - 1)` to `usize`.");
let mdashi = usize::try_from(mdash + li64).expect("Unable to convert `mdash + l` to `usize`.");
let lusize = usize::try_from(l).expect("Unable to convert `l` to `usize`.");
if mdash == li64 {
// Easier-to-read expression:
// R[i + 1, 1 + 1] * Rlm1[mu + (l - 1), l - 1 + (l - 1)]
// - R[i + 1, -1 + 1] * Rlm1[mu + (l - 1), -l + 1 + (l - 1)]
rmat[(ii, 2)] * rlm1[(mui, 2 * (lusize - 1))] - rmat[(ii, 0)] * rlm1[(mui, 0)]
} else if mdash == -li64 {
// Easier-to-read expression:
// R[i + 1, 1 + 1] * Rlm1[mu + (l - 1), -l + 1 + (l - 1)]
// + R[i + 1, -1 + 1] * Rlm1[mu + (l - 1), l - 1 + (l - 1)]
rmat[(ii, 2)] * rlm1[(mui, 0)] + rmat[(ii, 0)] * rlm1[(mui, 2 * (lusize - 1))]
} else {
// Easier-to-read expression:
// R[i + 1, 0 + 1] * Rlm1[mu + (l - 1), mdash + (l - 1)]
rmat[(ii, 1)] * rlm1[(mui, mdashi - 1)]
}
}
/// Returns the function $`U^l_{mm'}`$ as defined in Table 2 of Ivanic, J. & Ruedenberg, K.
/// Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion.
/// *The Journal of Physical Chemistry* **100**, 9099–9100 (1996),
/// [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `l` - The spherical harmonic order $`l \ge 2`$.
/// * `m` - The index $`m`$ satisfying $`-l+1 \le \mu \le l-1`$.
/// * `mdash` - The index $`m'`$ satisfying $`-l \le m' \le l`$.
/// * `rmat` - The representation matrix of the transformation of interest in the basis of
/// coordinate *functions* $`(y, z, x)`$, which are isosymmetric to the real spherical harmonics
/// $`(Y_{1, -1}, Y_{1, 0}, Y_{1, 1})`$.
/// * rlm1 - The representation matrix of the transformation of interest in the basis of the real
/// spherical harmonics $`Y_{l-1, m}`$ ordered by increasing $`m`$.
///
/// # Returns
///
/// The value of $`U^l_{mm'}`$.
fn func_u(l: u32, m: i64, mdash: i64, rmat: &Array2<f64>, rlm1: &Array2<f64>) -> f64 {
func_p(0, l, m, mdash, rmat, rlm1)
}
/// Returns the function $`V^l_{mm'}`$ as defined in Table 2 of Ivanic, J. & Ruedenberg, K.
/// Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion.
/// *The Journal of Physical Chemistry* **100**, 9099–9100 (1996),
/// [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `l` - The spherical harmonic order $`l \ge 2`$.
/// * `m` - The index $`m`$ satisfying $`-l \le m \le l`$.
/// * `mdash` - The index $`m'`$ satisfying $`-l \le m' \le l`$.
/// * `rmat` - The representation matrix of the transformation of interest in the basis of
/// coordinate *functions* $`(y, z, x)`$, which are isosymmetric to the real spherical harmonics
/// $`(Y_{1, -1}, Y_{1, 0}, Y_{1, 1})`$.
/// * `rlm1` - The representation matrix of the transformation of interest in the basis of the real
/// spherical harmonics $`Y_{l-1, m}`$ ordered by increasing $`m`$.
///
/// # Returns
///
/// The value of $`V^l_{mm'}`$.
fn func_v(l: u32, m: i64, mdash: i64, rmat: &Array2<f64>, rlm1: &Array2<f64>) -> f64 {
assert!(l >= 2, "`l` must be at least 2.");
let li64 = i64::from(l);
assert!(m.abs() <= li64, "Index `m` = {m} lies outside [-{l}, {l}].",);
assert!(
mdash.abs() <= li64,
"Index `mdash` = {mdash} lies outside [-{l}, {l}].",
);
assert_eq!(rmat.shape(), &[3, 3], "`rmat` must be a 3 × 3 matrix.");
assert_eq!(
rlm1.shape(),
&[2 * l as usize - 1, 2 * l as usize - 1],
"`rlm1` must be a {} × {} matrix.",
2 * l as usize - 1,
2 * l as usize - 1
);
match m.cmp(&0) {
Ordering::Greater => {
func_p(1, l, m - 1, mdash, rmat, rlm1) * (f64::from(1 + kdelta(&m, &1))).sqrt()
- func_p(-1, l, -m + 1, mdash, rmat, rlm1) * (f64::from(1 - kdelta(&m, &1)))
}
Ordering::Less => {
func_p(1, l, m + 1, mdash, rmat, rlm1) * (f64::from(1 - kdelta(&m, &(-1))))
+ func_p(-1, l, -m - 1, mdash, rmat, rlm1)
* (f64::from(1 + kdelta(&m, &(-1)))).sqrt()
}
Ordering::Equal => {
func_p(1, l, 1, mdash, rmat, rlm1) + func_p(-1, l, -1, mdash, rmat, rlm1)
}
}
}
/// Returns the function $`W^l_{mm'}`$ as defined in Table 2 of Ivanic, J. & Ruedenberg, K.
/// Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion.
/// *The Journal of Physical Chemistry* **100**, 9099–9100 (1996),
/// [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `l` - The spherical harmonic order $`l \ge 2`$.
/// * `m` - The index $`m`$ satisfying $`-l+2 \le m \le l-2`$ and $`m \ne 0`$.
/// * `mdash` - The index $`m'`$ satisfying $`-l \le m' \le l`$.
/// * `rmat` - The representation matrix of the transformation of interest in the basis of
/// coordinate *functions* $`(y, z, x)`$, which are isosymmetric to the real spherical harmonics
/// $`(Y_{1, -1}, Y_{1, 0}, Y_{1, 1})`$.
/// * `rlm1` - The representation matrix of the transformation of interest in the basis of the real
/// spherical harmonics $`Y_{l-1, m}`$ ordered by increasing $`m`$.
///
/// # Returns
///
/// The value of $`W^l_{mm'}`$.
fn func_w(l: u32, m: i64, mdash: i64, rmat: &Array2<f64>, rlm1: &Array2<f64>) -> f64 {
assert!(l >= 2, "`l` must be at least 2.");
let li64 = i64::from(l);
assert!(
m.abs() <= li64 - 2,
"Index `m` = {m} lies outside [{}, {}].",
-li64 + 2,
li64 - 2
);
assert_ne!(m, 0, "`m` cannot be zero.");
assert!(
mdash.abs() <= li64,
"Index `mdash` = {mdash} lies outside [-{l}, {l}].",
);
assert_eq!(rmat.shape(), &[3, 3], "`rmat` must be a 3 × 3 matrix.");
assert_eq!(
rlm1.shape(),
&[2 * l as usize - 1, 2 * l as usize - 1],
"`rlm1` must be a {} × {} matrix.",
2 * l as usize - 1,
2 * l as usize - 1
);
if m > 0 {
func_p(1, l, m + 1, mdash, rmat, rlm1) + func_p(-1, l, -m - 1, mdash, rmat, rlm1)
} else {
func_p(1, l, m - 1, mdash, rmat, rlm1) - func_p(-1, l, -m + 1, mdash, rmat, rlm1)
}
}
/// Returns the coefficient $`u^l_{mm'}`$ as defined in Table 1 of Ivanic, J. & Ruedenberg, K.
/// Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion.
/// *The Journal of Physical Chemistry* **100**, 9099–9100 (1996),
/// [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `l` - The spherical harmonic order $`l`$.
/// * `m` - The index $`m`$ satisfying $`-l \le m \le l`$.
/// * `mdash` - The index $`m'`$ satisfying $`-l \le m' \le l`$.
///
/// # Returns
///
/// The value of $`u^l_{mm'}`$.
fn coeff_u(l: u32, m: i64, mdash: i64) -> f64 {
let li64 = i64::from(l);
assert!(m.abs() <= li64, "Index `m` = {m} lies outside [-{l}, {l}].",);
assert!(
mdash.abs() <= li64,
"Index `mdash` = {mdash} lies outside [-{l}, {l}].",
);
let num = (li64 + m) * (li64 - m);
let den = if mdash.abs() < li64 {
(li64 + mdash) * (li64 - mdash)
} else {
(2 * li64) * (2 * li64 - 1)
};
(num.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{num}` to `f64`."))
/ den
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{den}` to `f64`.")))
.sqrt()
}
/// Returns the coefficient $`v^l_{mm'}`$ as defined in Table 1 of Ivanic, J. & Ruedenberg, K.
/// Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion.
/// *The Journal of Physical Chemistry* **100**, 9099–9100 (1996),
/// [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `l` - The spherical harmonic order $`l`$.
/// * `m` - The index $`m`$ satisfying $`-l \le m \le l`$.
/// * `mdash` - The index $`m'`$ satisfying $`-l \le m' \le l`$.
///
/// # Returns
///
/// The value of $`v^l_{mm'}`$.
fn coeff_v(l: u32, m: i64, mdash: i64) -> f64 {
let li64 = i64::from(l);
assert!(m.abs() <= li64, "Index `m` = {m} lies outside [-{l}, {l}].",);
assert!(
mdash.abs() <= li64,
"Index `mdash` = {mdash} lies outside [-{l}, {l}].",
);
let num = (1 + i64::from(kdelta(&m, &0))) * (li64 + m.abs() - 1) * (li64 + m.abs());
let den = if mdash.abs() < li64 {
(li64 + mdash) * (li64 - mdash)
} else {
(2 * li64) * (2 * li64 - 1)
};
0.5 * (num
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{num}` to `f64`."))
/ den
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{den}` to `f64`.")))
.sqrt()
* f64::from(1 - 2 * i16::from(kdelta(&m, &0)))
}
/// Returns the coefficient $`w^l_{mm'}`$ as defined in Table 1 of Ivanic, J. & Ruedenberg, K.
/// Rotation Matrices for Real Spherical Harmonics. Direct Determination by Recursion.
/// *The Journal of Physical Chemistry* **100**, 9099–9100 (1996),
/// [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `l` - The spherical harmonic order $`l`$.
/// * `m` - The index $`m`$ satisfying $`-l \le m \le l`$.
/// * `mdash` - The index $`m'`$ satisfying $`-l \le m' \le l`$.
///
/// # Returns
///
/// The value of $`w^l_{mm'}`$.
fn coeff_w(l: u32, m: i64, mdash: i64) -> f64 {
let li64 = i64::from(l);
assert!(m.abs() <= li64, "Index `m` = {m} lies outside [-{l}, {l}].",);
assert!(
mdash.abs() <= li64,
"Index `mdash` = {mdash} lies outside [-{l}, {l}].",
);
let num = (li64 - m.abs() - 1) * (li64 - m.abs());
let den = if mdash.abs() < li64 {
(li64 + mdash) * (li64 - mdash)
} else {
(2 * li64) * (2 * li64 - 1)
};
-0.5 * ((num
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{num}` to `f64`.")))
/ (den
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{den}` to `f64`."))))
.sqrt()
* f64::from(1 - kdelta(&m, &0))
}
/// Returns the representation matrix $`\mathbf{R}`$ for a rotation in the basis of the coordinate
/// *functions* $`(y, z, x)`$.
///
/// Let $`\hat{R}(\phi, \hat{\mathbf{n}})`$ be a rotation parametrised by the angle $`\phi`$ and
/// axis $`\hat{\mathbf{n}}`$. The corresponding representation matrix
/// $`\mathbf{R}(\phi, \hat{\mathbf{n}})`$ is defined as
///
/// ```math
/// \hat{R}(\phi, \hat{\mathbf{n}})\ (y, z, x)
/// = (y, z, x) \mathbf{R}(\phi, \hat{\mathbf{n}})
/// ```
///
/// See Section **2**-4 of Altmann, S. L. Rotations, Quaternions, and Double Groups. (Dover
/// Publications, Inc., 2005) for a detailed discussion on how $`(y, z, x)`$ should be considered
/// as coordinate *functions*.
///
/// # Arguments
///
/// * `angle` - The angle $`\phi`$ of the rotation in radians. A positive rotation is an
/// anticlockwise rotation when looking down `axis`.
/// * `axis` - A space-fixed vector defining the axis of rotation. The supplied vector will be
/// normalised.
/// # Returns
///
/// The representation matrix $`\mathbf{R}(\phi, \hat{\mathbf{n}})`$.
///
/// # Panics
///
/// Panics when a three-dimensional rotation matrix cannot be constructed for `angle` and `axis`.
#[must_use]
pub fn rmat(angle: f64, axis: Vector3<f64>) -> Array2<f64> {
let normalised_axis = Unit::new_normalize(axis);
let rot = Rotation3::from_axis_angle(&normalised_axis, angle);
// nalgebra matrix iter is column-major.
let rot_array = Array2::<f64>::from_shape_vec(
(3, 3).f(),
rot.into_inner().iter().copied().collect::<Vec<_>>(),
)
.unwrap_or_else(
|_| panic!(
"Unable to construct a three-dimensional rotation matrix for angle {angle} and axis {axis}."
)
);
rot_array
.select(Axis(0), &[1, 2, 0])
.select(Axis(1), &[1, 2, 0])
}
/// Computes the representation matrix $`\mathbf{R}^l`$ for a transformation of interest in the
/// basis of real spherical harmonics $`Y_{lm}`$ ordered by increasing $`m`$, as defined in
/// Equation 5.8 and given in Equation 8.1 of Ivanic, J. & Ruedenberg, K. Rotation Matrices for
/// Real Spherical Harmonics. Direct Determination by Recursion. *The Journal of Physical
/// Chemistry* **100**, 9099–9100 (1996), [DOI](https://doi.org/10.1021/jp953350u).
///
/// # Arguments
///
/// * `l` - The spherical harmonic order $`l \ge 2`$.
/// * `rmat` - The representation matrix of the transformation of interest in the basis of coordinate
/// *functions* $`(y, z, x)`$, which are isosymmetric to the real spherical harmonics
/// $`(Y_{1, -1}, Y_{1, 0}, Y_{1, 1})`$.
/// * `rlm1` - The representation matrix of the transformation of interest in the basis of the real
/// spherical harmonics $`Y_{l-1, m}`$ ordered by increasing $`m`$.
///
/// # Returns
///
/// The required representation matrix $`\mathbf{R}^l`$.
///
/// # Panics
///
/// Panics when `l` is less than `2`.
#[must_use]
pub fn rlmat(l: u32, rmat: &Array2<f64>, rlm1: &Array2<f64>) -> Array2<f64> {
assert!(l >= 2, "`l` must be at least 2.");
let li64 = i64::from(l);
let mut rl = Array2::<f64>::zeros((2 * l as usize + 1, 2 * l as usize + 1));
for (mi, m) in (-li64..=li64).enumerate() {
for (mdashi, mdash) in (-li64..=li64).enumerate() {
let cu = coeff_u(l, m, mdash);
let f_u = if approx::relative_ne!(cu.abs(), 0.0, epsilon = 1e-14, max_relative = 1e-14)
{
func_u(l, m, mdash, rmat, rlm1)
} else {
0.0
};
let cv = coeff_v(l, m, mdash);
let f_v = if approx::relative_ne!(cv.abs(), 0.0, epsilon = 1e-14, max_relative = 1e-14)
{
func_v(l, m, mdash, rmat, rlm1)
} else {
0.0
};
let cw = coeff_w(l, m, mdash);
let f_w = if approx::relative_ne!(cw.abs(), 0.0, epsilon = 1e-14, max_relative = 1e-14)
{
func_w(l, m, mdash, rmat, rlm1)
} else {
0.0
};
rl[(mi, mdashi)] = cu * f_u + cv * f_v + cw * f_w;
}
}
rl
}