1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
//! Three-dimensional rotations of spinors.
use std::cmp;
use std::fmt;
use approx;
use factorial::Factorial;
use nalgebra::Vector3;
use ndarray::{array, Array2, Axis};
use num::{BigUint, Complex, Zero};
use num_traits::ToPrimitive;
use serde::{Deserialize, Serialize};
#[cfg(test)]
#[path = "spinor_rotation_3d_tests.rs"]
mod spinor_rotation_3d_tests;
// ================
// Enum definitions
// ================
/// Enumerated type to manage spin constraints and spin space information.
#[derive(Clone, Debug, Hash, PartialEq, Eq, Serialize, Deserialize)]
pub enum SpinConstraint {
/// Variant for restricted spin constraint: the spatial parts of all spin spaces are identical.
/// The associated value is the number of spin spaces.
Restricted(u16),
/// Variant for unrestricted spin constraint: the spatial parts of different spin spaces are
/// different, but spin collinearity is maintained. The associated values are the number of spin
/// spaces (*i.e.* the number of different spatial parts that are handled separately) and a
/// boolean indicating if the spin spaces are arranged in increasing $`m`$ order.
Unrestricted(u16, bool),
/// Variant for generalised spin constraint: the spatial parts of different spin spaces are
/// different, and no spin collinearity is imposed. The associated values are the number of spin
/// spaces and a boolean indicating if the spin spaces are arranged in increasing $`m`$ order.
Generalised(u16, bool),
}
impl SpinConstraint {
/// Returns the total number of units of consideration.
///
/// A 'unit' of consideration is commonly known as a 'spin channel' or 'spin space'.
pub fn nunits(&self) -> u16 {
match self {
Self::Restricted(nspins) => *nspins,
Self::Unrestricted(nspins, _) => *nspins,
Self::Generalised(_, _) => 1,
}
}
/// Returns the number of spin spaces per 'unit' of consideration.
///
/// A 'unit' of consideration is commonly known as a 'spin channel' or 'spin space'.
pub fn nspins_per_unit(&self) -> u16 {
match self {
Self::Restricted(_) => 1,
Self::Unrestricted(_, _) => 1,
Self::Generalised(nspins, _) => *nspins,
}
}
/// Returns the total number of spin spaces.
pub fn nspins(&self) -> u16 {
match self {
Self::Restricted(nspins) => *nspins,
Self::Unrestricted(nspins, _) => *nspins,
Self::Generalised(nspins, _) => *nspins,
}
}
}
impl fmt::Display for SpinConstraint {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Restricted(nspins) => write!(
f,
"Restricted ({} spin {})",
nspins,
if *nspins == 1 { "space" } else { "spaces" }
),
Self::Unrestricted(nspins, increasingm) => write!(
f,
"Unrestricted ({} spin {}, {} m)",
nspins,
if *nspins == 1 { "space" } else { "spaces" },
if *increasingm {
"increasing"
} else {
"decreasing"
}
),
Self::Generalised(nspins, increasingm) => write!(
f,
"Generalised ({} spin {}, {} m)",
nspins,
if *nspins == 1 { "space" } else { "spaces" },
if *increasingm {
"increasing"
} else {
"decreasing"
}
),
}
}
}
// =========
// Functions
// =========
/// Returns an element in the Wigner rotation matrix for $`j = 1/2`$ defined by
///
/// ```math
/// \hat{R}(\alpha, \beta, \gamma) \ket{\tfrac{1}{2}m}
/// = \sum_{m'} \ket{\tfrac{1}{2}m'} D^{(1/2)}_{m'm}(\alpha, \beta, \gamma).
/// ```
///
/// # Arguments
///
/// * `mdashi` - Index for $`m'`$ given by $`m'+\tfrac{1}{2}`$.
/// * `mi` - Index for $`m`$ given by $`m+\tfrac{1}{2}`$.
/// * `euler_angles` - A triplet of Euler angles $`(\alpha, \beta, \gamma)`$ in radians, following
/// the Whitaker convention, *i.e.* $`z_2-y-z_1`$ (extrinsic rotations).
///
/// # Returns
///
/// The element $`D^{(1/2)}_{m'm}(\alpha, \beta, \gamma)`$.
fn dmat_euler_element(mdashi: usize, mi: usize, euler_angles: (f64, f64, f64)) -> Complex<f64> {
assert!(mdashi == 0 || mdashi == 1, "mdashi can only be 0 or 1.");
assert!(mi == 0 || mi == 1, "mi can only be 0 or 1.");
let (alpha, beta, gamma) = euler_angles;
let d = if (mi, mdashi) == (1, 1) {
// m = 1/2, mdash = 1/2
(beta / 2.0).cos()
} else if (mi, mdashi) == (1, 0) {
// m = 1/2, mdash = -1/2
(beta / 2.0).sin()
} else if (mi, mdashi) == (0, 1) {
// m = -1/2, mdash = 1/2
-(beta / 2.0).sin()
} else if (mi, mdashi) == (0, 0) {
// m = -1/2, mdash = -1/2
(beta / 2.0).cos()
} else {
panic!("Invalid mi and/or mdashi.");
};
let alpha_basic = alpha.rem_euclid(2.0 * std::f64::consts::PI);
let gamma_basic = gamma.rem_euclid(2.0 * std::f64::consts::PI);
let i = Complex::<f64>::i();
let mut prefactor = (-i
* (alpha_basic
* (mdashi
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{mdashi}` to `f64`."))
- 0.5)
+ gamma_basic
* (mi
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{mi}` to `f64`."))
- 0.5)))
.exp();
// Half-integer j = 1/2; double-group behaviours possible.
let alpha_double = approx::relative_eq!(
alpha.div_euclid(2.0 * std::f64::consts::PI).rem_euclid(2.0),
1.0,
epsilon = 1e-14,
max_relative = 1e-14
);
let gamma_double = approx::relative_eq!(
gamma.div_euclid(2.0 * std::f64::consts::PI).rem_euclid(2.0),
1.0,
epsilon = 1e-14,
max_relative = 1e-14
);
if alpha_double != gamma_double {
prefactor *= -1.0;
}
prefactor * d
}
/// Returns the Wigner rotation matrix for $`j = 1/2`$ whose elements are defined by
///
/// ```math
/// \hat{R}(\alpha, \beta, \gamma) \ket{\tfrac{1}{2}m}
/// = \sum_{m'} \ket{\tfrac{1}{2}m'} D^{(1/2)}_{m'm}(\alpha, \beta, \gamma).
/// ```
///
/// # Arguments
///
/// * `euler_angles` - A triplet of Euler angles $`(\alpha, \beta, \gamma)`$ in radians, following
/// the Whitaker convention, *i.e.* $`z_2-y-z_1`$ (extrinsic rotations).
/// * `increasingm` - If `true`, the rows and columns of $`\mathbf{D}^{(1/2)}`$ are
/// arranged in increasing order of $`m_l = -l, \ldots, l`$. If `false`, the order is reversed:
/// $`m_l = l, \ldots, -l`$. The recommended default is `false`, in accordance with convention.
///
/// # Returns
///
/// The matrix $`\mathbf{D}^{(1/2)}(\alpha, \beta, \gamma)`$.
#[must_use]
pub fn dmat_euler(euler_angles: (f64, f64, f64), increasingm: bool) -> Array2<Complex<f64>> {
let mut dmat = Array2::<Complex<f64>>::zeros((2, 2));
for mdashi in 0..2 {
for mi in 0..2 {
dmat[(mdashi, mi)] = dmat_euler_element(mdashi, mi, euler_angles);
}
}
if !increasingm {
dmat.invert_axis(Axis(0));
dmat.invert_axis(Axis(1));
}
dmat
}
/// Returns the Wigner rotation matrix for $`j = 1/2`$ whose elements are defined by
///
/// ```math
/// \hat{R}(\phi\hat{\mathbf{n}}) \ket{\tfrac{1}{2}m}
/// = \sum_{m'} \ket{\tfrac{1}{2}m'} D^{(1/2)}_{m'm}(\phi\hat{\mathbf{n}}).
/// ```
///
/// The parametrisation of $`\mathbf{D}^{(1/2)}`$ by $`\phi`$ and $`\hat{\mathbf{n}}`$ is given
/// in (**4**-9.12) of Altmann, S. L. Rotations, Quaternions, and Double Groups. (Dover
/// Publications, Inc., 2005).
///
/// # Arguments
///
/// * `angle` - The angle $`\phi`$ of the rotation in radians. A positive rotation is an
/// anticlockwise rotation when looking down `axis`.
/// * `axis` - A space-fixed vector defining the axis of rotation. The supplied vector will be
/// normalised.
/// * `increasingm` - If `true`, the rows and columns of $`\mathbf{D}^{(1/2)}`$ are
/// arranged in increasing order of $`m_l = -l, \ldots, l`$. If `false`, the order is reversed:
/// $`m_l = l, \ldots, -l`$. The recommended default is `false`, in accordance with convention.
///
/// # Returns
///
/// The matrix $`\mathbf{D}^{(1/2)}(\phi\hat{\mathbf{n}})`$.
#[must_use]
pub fn dmat_angleaxis(angle: f64, axis: Vector3<f64>, increasingm: bool) -> Array2<Complex<f64>> {
let normalised_axis = axis.normalize();
let nx = normalised_axis.x;
let ny = normalised_axis.y;
let nz = normalised_axis.z;
let i = Complex::<f64>::i();
let double_angle = angle.rem_euclid(4.0 * std::f64::consts::PI);
let mut dmat = array![
[
(double_angle / 2.0).cos() + i * nz * (double_angle / 2.0).sin(),
(ny - i * nx) * (double_angle / 2.0).sin()
],
[
-(ny + i * nx) * (double_angle / 2.0).sin(),
(double_angle / 2.0).cos() - i * nz * (double_angle / 2.0).sin(),
]
];
if !increasingm {
dmat.invert_axis(Axis(0));
dmat.invert_axis(Axis(1));
}
dmat
}
/// Returns an element in the Wigner rotation matrix for an integral or half-integral
/// $`j`$, defined by
///
/// ```math
/// \hat{R}(\alpha, \beta, \gamma) \ket{jm}
/// = \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\alpha, \beta, \gamma).
/// ```
///
/// The explicit expression for the elements of $`\mathbf{D}^{(1/2)}(\alpha, \beta, \gamma)`$
/// is given in Professor Anthony Stone's graduate lecture notes on Angular Momentum at the
/// University of Cambridge in 2006.
///
/// # Arguments
///
/// * `twoj` - Two times the angular momentum $`2j`$. If this is even, $`j`$ is integral; otherwise,
/// $`j`$ is half-integral.
/// * `mdashi` - Index for $`m'`$ given by $`m'+\tfrac{1}{2}`$.
/// * `mi` - Index for $`m`$ given by $`m+\tfrac{1}{2}`$.
/// * `euler_angles` - A triplet of Euler angles $`(\alpha, \beta, \gamma)`$ in radians, following
/// the Whitaker convention, *i.e.* $`z_2-y-z_1`$ (extrinsic rotations).
///
/// # Returns
///
/// The element $`D^{(j)}_{m'm}(\alpha, \beta, \gamma)`$.
#[allow(clippy::too_many_lines)]
pub fn dmat_euler_gen_element(
twoj: u32,
mdashi: usize,
mi: usize,
euler_angles: (f64, f64, f64),
) -> Complex<f64> {
assert!(
mdashi <= twoj as usize,
"`mdashi` must be between 0 and {twoj} (inclusive).",
);
assert!(
mi <= twoj as usize,
"`mi` must be between 0 and {twoj} (inclusive).",
);
let (alpha, beta, gamma) = euler_angles;
let j = f64::from(twoj) / 2.0;
let mdash = mdashi
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{mdashi}` to `f64`."))
- j;
let m = mi
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{mi}` to `f64`."))
- j;
let i = Complex::<f64>::i();
let alpha_basic = alpha.rem_euclid(2.0 * std::f64::consts::PI);
let gamma_basic = gamma.rem_euclid(2.0 * std::f64::consts::PI);
let mut prefactor = (-i * (alpha_basic * mdash + gamma_basic * m)).exp();
if twoj % 2 != 0 {
// Half-integer j; double-group behaviours possible.
let alpha_double = approx::relative_eq!(
alpha.div_euclid(2.0 * std::f64::consts::PI).rem_euclid(2.0),
1.0,
epsilon = 1e-14,
max_relative = 1e-14
);
let gamma_double = approx::relative_eq!(
gamma.div_euclid(2.0 * std::f64::consts::PI).rem_euclid(2.0),
1.0,
epsilon = 1e-14,
max_relative = 1e-14
);
if alpha_double != gamma_double {
prefactor *= -1.0;
}
}
// tmax = min(int(j + mdash), int(j - m))
// j + mdash = mdashi
// j - m = twoj - mi
let tmax = cmp::min(mdashi, twoj as usize - mi);
// tmin = max(0, int(mdash - m))
// mdash - m = mdashi - mi
let tmin = if mdashi > mi { mdashi - mi } else { 0 };
let d = (tmin..=tmax).fold(Complex::<f64>::zero(), |acc, t| {
// j - m = twoj - mi
// j - mdash = twoj - mdashi
let num = (BigUint::from(mdashi)
.checked_factorial()
.unwrap_or_else(|| panic!("Unable to compute the factorial of {mdashi}."))
* BigUint::from(twoj as usize - mdashi)
.checked_factorial()
.unwrap_or_else(|| {
panic!(
"Unable to compute the factorial of {}.",
twoj as usize - mdashi
)
})
* BigUint::from(mi)
.checked_factorial()
.unwrap_or_else(|| panic!("Unable to compute the factorial of {mi}."))
* BigUint::from(twoj as usize - mi)
.checked_factorial()
.unwrap_or_else(|| {
panic!("Unable to compute the factorial of {}.", twoj as usize - mi)
}))
.to_f64()
.expect("Unable to convert a `BigUint` value to `f64`.")
.sqrt();
// t <= j + mdash ==> j + mdash - t = mdashi - t >= 0
// t <= j - m ==> j - m - t = twoj - mi - t >= 0
// t >= 0
// t >= mdash - m ==> t - (mdash - m) = t + mi - mdashi >= 0
let den = (BigUint::from(mdashi - t)
.checked_factorial()
.unwrap_or_else(|| panic!("Unable to compute the factorial of {}.", mdashi - t))
* BigUint::from(twoj as usize - mi - t)
.checked_factorial()
.unwrap_or_else(|| {
panic!(
"Unable to compute the factorial of {}.",
twoj as usize - mi - t
)
})
* BigUint::from(t)
.checked_factorial()
.unwrap_or_else(|| panic!("Unable to compute the factorial of {t}."))
* BigUint::from(t + mi - mdashi)
.checked_factorial()
.unwrap_or_else(|| {
panic!("Unable to compute the factorial of {}.", t + mi - mdashi)
}))
.to_f64()
.expect("Unable to convert a `BigUint` value to `f64`.");
let trigfactor = (beta / 2.0).cos().powi(
i32::try_from(twoj as usize + mdashi - mi - 2 * t).unwrap_or_else(|_| {
panic!(
"Unable to convert `{}` to `i32`.",
twoj as usize + mdashi - mi - 2 * t
)
}),
) * (beta / 2.0).sin().powi(
i32::try_from(2 * t + mi - mdashi).unwrap_or_else(|_| {
panic!("Unable to convert `{}` to `i32`.", 2 * t + mi - mdashi)
}),
);
if t % 2 == 0 {
acc + (num / den) * trigfactor
} else {
acc - (num / den) * trigfactor
}
});
prefactor * d
}
/// Returns the Wigner rotation matrix in the Euler-angle parametrisation for any integral or
/// half-integral $`j`$ whose elements are defined by
///
/// ```math
/// \hat{R}(\alpha, \beta, \gamma) \ket{jm}
/// = \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\alpha, \beta, \gamma).
/// ```
///
/// and given in [`dmat_euler_gen_element`].
///
/// # Arguments
///
/// * `twoj` - Two times the angular momentum $`2j`$. If this is even, $`j`$ is integral; otherwise,
/// $`j`$ is half-integral.
/// * `euler_angles` - A triplet of Euler angles $`(\alpha, \beta, \gamma)`$ in radians, following
/// the Whitaker convention, *i.e.* $`z_2-y-z_1`$ (extrinsic rotations).
/// * `increasingm` - If `true`, the rows and columns of $`\mathbf{D}^{(j)}`$ are
/// arranged in increasing order of $`m_l = -l, \ldots, l`$. If `false`, the order is reversed:
/// $`m_l = l, \ldots, -l`$. The recommended default is `false`, in accordance with convention.
///
/// # Returns
///
/// The matrix $`\mathbf{D}^{(j)}(\alpha, \beta, \gamma)`$.
#[must_use]
pub fn dmat_euler_gen(
twoj: u32,
euler_angles: (f64, f64, f64),
increasingm: bool,
) -> Array2<Complex<f64>> {
let dim = twoj as usize + 1;
let mut dmat = Array2::<Complex<f64>>::zeros((dim, dim));
for mdashi in 0..dim {
for mi in 0..dim {
dmat[(mdashi, mi)] = dmat_euler_gen_element(twoj, mdashi, mi, euler_angles);
}
}
if !increasingm {
dmat.invert_axis(Axis(0));
dmat.invert_axis(Axis(1));
}
dmat
}
/// Returns the Wigner rotation matrix in the angle-axis parametrisation for any integral or
/// half-integral $`j`$ whose elements are defined by
///
/// ```math
/// \hat{R}(\phi\hat{\mathbf{n}}) \ket{jm}
/// = \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\phi\hat{\mathbf{n}}).
/// ```
///
/// # Arguments
///
/// * `twoj` - Two times the angular momentum $`2j`$. If this is even, $`j`$ is integral; otherwise,
/// $`j`$ is half-integral.
/// * `angle` - The angle $`\phi`$ of the rotation in radians. A positive rotation is an
/// anticlockwise rotation when looking down `axis`.
/// * `axis` - A space-fixed vector defining the axis of rotation. The supplied vector will be
/// normalised.
/// * `increasingm` - If `true`, the rows and columns of $`\mathbf{D}^{(1/2)}`$ are
/// arranged in increasing order of $`m_l = -l, \ldots, l`$. If `false`, the order is reversed:
/// $`m_l = l, \ldots, -l`$. The recommended default is `false`, in accordance with convention.
///
/// # Returns
///
/// The matrix $`\mathbf{D}^{(j)}(\phi\hat{\mathbf{n}})`$.
#[must_use]
pub fn dmat_angleaxis_gen(
twoj: u32,
angle: f64,
axis: Vector3<f64>,
increasingm: bool,
) -> Array2<Complex<f64>> {
let euler_angles = angleaxis_to_euler(angle, axis);
dmat_euler_gen(twoj, euler_angles, increasingm)
}
/// Converts an angle and axis of rotation to Euler angles using the equations in Section
/// (**3**-5.4) in Altmann, S. L. Rotations, Quaternions, and Double Groups. (Dover
/// Publications, Inc., 2005), but with an extended range,
///
/// ```math
/// 0 \le \alpha \le 2\pi, \quad
/// 0 \le \beta \le \pi, \quad
/// 0 \le \gamma \le 4\pi,
/// ```
///
/// such that all angle-axis parametrisations of $`\phi\hat{\mathbf{n}}`$ for
/// $`0 \le \phi \le 4 \pi`$ are mapped to unique triplets of $`(\alpha, \beta, \gamma)`$,
/// as explained in Fan, P.-D., Chen, J.-Q., Mcaven, L. & Butler, P. Unique Euler angles and
/// self-consistent multiplication tables for double point groups. *International Journal of
/// Quantum Chemistry* **75**, 1–9 (1999),
/// [DOI](https://doi.org/10.1002/(SICI)1097-461X(1999)75:1<1::AID-QUA1>3.0.CO;2-V).
///
/// When $`\beta = 0`$, only the sum $`\alpha+\gamma`$ is determined. Likewise, when
/// $`\beta = \pi`$, only the difference $`\alpha-\gamma`$ is determined. We thus set
/// $`\alpha = 0`$ in these cases and solve for $`\gamma`$ without changing the nature of the
/// results.
///
/// # Arguments
///
/// * `angle` - The angle $`\phi`$ of the rotation in radians. A positive rotation is an
/// anticlockwise rotation when looking down `axis`.
/// * `axis` - A space-fixed vector defining the axis of rotation $`\hat{\mathbf{n}}`$. The supplied
/// vector will be normalised.
///
/// # Returns
///
/// The tuple containing the Euler angles $`(\alpha, \beta, \gamma)`$ in radians, following the
/// Whitaker convention.
fn angleaxis_to_euler(angle: f64, axis: Vector3<f64>) -> (f64, f64, f64) {
let normalised_axis = axis.normalize();
let nx = normalised_axis.x;
let ny = normalised_axis.y;
let nz = normalised_axis.z;
let double_angle = angle.rem_euclid(4.0 * std::f64::consts::PI);
let basic_angle = angle.rem_euclid(2.0 * std::f64::consts::PI);
let double = approx::relative_eq!(
angle.div_euclid(2.0 * std::f64::consts::PI).rem_euclid(2.0),
1.0,
epsilon = 1e-14,
max_relative = 1e-14
);
let cosbeta = 1.0 - 2.0 * (nx.powi(2) + ny.powi(2)) * (basic_angle / 2.0).sin().powi(2);
let cosbeta = if cosbeta.abs() > 1.0 {
// Numerical errors can cause cosbeta to be outside [-1, 1].
approx::assert_relative_eq!(cosbeta.abs(), 1.0, epsilon = 1e-14, max_relative = 1e-14);
cosbeta.round()
} else {
cosbeta
};
// acos gives 0 <= beta <= pi.
let beta = cosbeta.acos();
let (alpha, gamma) =
if approx::relative_ne!(cosbeta.abs(), 1.0, epsilon = 1e-14, max_relative = 1e-14) {
// cosbeta != 1 or -1, beta != 0 or pi
// alpha and gamma are given by Equations (**3**-5.4) to (**3**-5.10)
// in Altmann, S. L. Rotations, Quaternions, and Double Groups. (Dover Publications,
// Inc., 2005).
// These equations yield the same alpha and gamma for phi and phi+2pi.
// We therefore account for double-group behaviours separately.
let num_alpha =
-nx * basic_angle.sin() + 2.0 * ny * nz * (basic_angle / 2.0).sin().powi(2);
let den_alpha =
ny * basic_angle.sin() + 2.0 * nx * nz * (basic_angle / 2.0).sin().powi(2);
let alpha = num_alpha
.atan2(den_alpha)
.rem_euclid(2.0 * std::f64::consts::PI);
let num_gamma =
nx * basic_angle.sin() + 2.0 * ny * nz * (basic_angle / 2.0).sin().powi(2);
let den_gamma =
ny * basic_angle.sin() - 2.0 * nx * nz * (basic_angle / 2.0).sin().powi(2);
let gamma_raw = num_gamma.atan2(den_gamma);
let gamma = if double {
(gamma_raw + 2.0 * std::f64::consts::PI).rem_euclid(4.0 * std::f64::consts::PI)
} else {
gamma_raw.rem_euclid(4.0 * std::f64::consts::PI)
};
(alpha, gamma)
} else if approx::relative_eq!(cosbeta, 1.0, epsilon = 1e-14, max_relative = 1e-14) {
// cosbeta == 1, beta == 0
// cos(0.5(alpha+gamma)) = cos(0.5phi)
// We set alpha == 0 by convention.
// We then set gamma = phi mod (4*pi).
(0.0, double_angle)
} else {
// cosbeta == -1, beta == pi
// sin(0.5phi) must be non-zero, otherwise cosbeta == 1, a
// contradiction.
// sin(0.5(alpha-gamma)) = -nx*sin(0.5phi)
// cos(0.5(alpha-gamma)) = +ny*sin(0.5phi)
// We set alpha == 0 by convention.
// gamma then lies in [-2pi, 2pi].
// We obtain the same gamma for phi and phi+2pi.
// We therefore account for double-group behaviours separately.
let gamma_raw = 2.0 * nx.atan2(ny);
let gamma = if double {
(gamma_raw + 2.0 * std::f64::consts::PI).rem_euclid(4.0 * std::f64::consts::PI)
} else {
gamma_raw.rem_euclid(4.0 * std::f64::consts::PI)
};
(0.0, gamma)
};
(alpha, beta, gamma)
}