1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
//! Geometrical objects and manipulations.
use std::collections::HashSet;
use std::fmt;
use approx;
use derive_builder::Builder;
use fraction;
use itertools::{self, Itertools};
use nalgebra::{ClosedMul, Matrix3, Point3, Rotation3, Scalar, UnitVector3, Vector3};
use num_traits::{One, ToPrimitive};
use serde::{Deserialize, Serialize};
use crate::auxiliary::atom::Atom;
use crate::auxiliary::misc::HashableFloat;
type F32 = fraction::GenericFraction<u32>;
#[cfg(test)]
#[path = "geometry_tests.rs"]
mod geometry_tests;
// ================
// Enum definitions
// ================
/// Enumerated type to classify the type of improper rotation given an angle and axis.
pub enum ImproperRotationKind {
/// The improper rotation is a rotation by the specified angle and axis followed by a
/// reflection in a mirror plane perpendicular to the axis.
MirrorPlane,
/// The improper rotation is a rotation by the specified angle and axis followed by an
/// inversion through the centre of inversion.
InversionCentre,
}
/// Mirror-plane improper rotation kind.
pub const IMSIG: ImproperRotationKind = ImproperRotationKind::MirrorPlane;
/// Inversion-centre improper rotation kind.
pub const IMINV: ImproperRotationKind = ImproperRotationKind::InversionCentre;
// =================
// Utility functions
// =================
/// Returns the rotation angle adjusted to be in the interval $`(-\pi, +\pi]`$ and the number of
/// $`2\pi`$-folds required to bring the original angle to that interval.
///
/// # Arguments
///
/// * `rot_ang` - A rotation angle.
/// * `thresh` - A threshold for comparisons.
///
/// # Returns
///
/// The normalised rotation angle and the number of folds.
#[must_use]
pub fn normalise_rotation_angle(rot_ang: f64, thresh: f64) -> (f64, u32) {
let frac_1_2 = 1.0 / 2.0;
let fraction = rot_ang / (2.0 * std::f64::consts::PI);
if fraction > frac_1_2 + thresh {
let integer_part = fraction.trunc().to_u32().unwrap_or_else(|| {
panic!("Unable to convert the integer part of `{fraction}` to `u32`.")
});
let x = if fraction.fract() <= frac_1_2 + thresh {
integer_part
} else {
integer_part + 1
};
(rot_ang - 2.0 * std::f64::consts::PI * f64::from(x), x)
} else if fraction <= -frac_1_2 + thresh {
let integer_part = (-fraction).trunc().to_u32().unwrap_or_else(|| {
panic!("Unable to convert the integer part of `{fraction}` to `u32`.")
});
let x = if (-fraction).fract() < frac_1_2 - thresh {
integer_part
} else {
integer_part + 1
};
(rot_ang + 2.0 * std::f64::consts::PI * f64::from(x), x)
} else {
(rot_ang, 0)
}
}
/// Returns the rotation fraction adjusted to be in the interval $`(-1/2, +1/2]`$ and the number of
/// $`1`$-folds required to bring the original fraction to that interval.
///
/// # Arguments
///
/// * `fraction` - A rotation fraction.
///
/// # Returns
///
/// The normalised rotation fraction and the number of folds.
#[must_use]
pub fn normalise_rotation_fraction(fraction: F32) -> (F32, u32) {
// Consider a fraction f.
//
// If f > 1/2, we seek a positive integer x such that
// -1/2 < f - x <= 1/2.
// It turns out that x ∈ [f - 1/2, f + 1/2).
//
// If f <= -1/2, we seek a positive integer x such that
// -1/2 < f + x <= 1/2.
// It turns out that x ∈ (-f - 1/2, -f + 1/2].
//
// If the proper rotation corresponding to f is reached from the identity
// via a continuous path in the parametric ball, x gives the number of times
// this path goes through a podal-antipodal jump, and thus whether x is even
// corresponds to whether this homotopy path is of class 0.
//
// See S.L. Altmann, Rotations, Quaternions, and Double Groups (Dover
// Publications, Inc., New York, 2005) for further information.
let frac_1_2 = F32::new(1u32, 2u32);
if fraction > frac_1_2 {
let integer_part = fraction.trunc();
let x = if fraction.fract() <= frac_1_2 {
integer_part
} else {
integer_part + F32::one()
};
(
fraction - x,
x.to_u32()
.expect("Unable to convert the 2π-turn number to `u32`."),
)
} else if fraction <= -frac_1_2 {
let integer_part = (-fraction).trunc();
let x = if (-fraction).fract() < frac_1_2 {
integer_part
} else {
integer_part + F32::one()
};
(
fraction + x,
x.to_u32()
.expect("Unable to convert the 2π-turn number to `u32`."),
)
} else {
(fraction, 0)
}
}
/// Determines the reduced fraction $`k/n`$ where $`k`$ and $`n`$ are both integers representing a
/// proper rotation $`C_n^k`$ corresponding to a specified rotation angle.
///
/// # Arguments
///
/// * `angle` - An angle of rotation.
/// * `thresh` - A threshold for checking if a floating point number is integral.
/// * `max_trial_power` - Maximum power $`k`$ to try.
///
/// # Returns
///
/// An [`Option`] wrapping the required fraction.
///
/// # Panics
///
/// Panics if the deduced order $`n`$ is negative.
#[must_use]
pub fn get_proper_fraction(angle: f64, thresh: f64, max_trial_power: u32) -> Option<F32> {
let (normalised_angle, _) = normalise_rotation_angle(angle, thresh);
let rational_order = (2.0 * std::f64::consts::PI) / normalised_angle.abs();
let mut power: u32 = 1;
while approx::relative_ne!(
rational_order * (f64::from(power)),
(rational_order * (f64::from(power))).round(),
max_relative = thresh,
epsilon = thresh
) && power < max_trial_power
{
power += 1;
}
if approx::relative_eq!(
rational_order * (f64::from(power)),
(rational_order * (f64::from(power))).round(),
max_relative = thresh,
epsilon = thresh
) {
let orderf64 = (rational_order * (f64::from(power))).round();
assert!(orderf64.is_sign_positive());
assert!(orderf64 <= f64::from(u32::MAX));
#[allow(clippy::cast_sign_loss, clippy::cast_possible_truncation)]
let order = orderf64 as u32;
if normalised_angle > 0.0 {
Some(F32::new(power, order))
} else {
Some(F32::new_neg(power, order))
}
} else {
None
}
}
/// Computes the outer product between two three-dimensional vectors.
///
/// # Arguments
///
/// * `vec1` - The first vector, $`\mathbf{v}_1`$.
/// * `vec2` - The second vector, $`\mathbf{v}_2`$.
///
/// # Returns
///
/// The outer product $`\mathbf{v}_1 \otimes \mathbf{v}_2`$.
fn outer<T: Scalar + ClosedMul + Copy>(vec1: &Vector3<T>, vec2: &Vector3<T>) -> Matrix3<T> {
let outer_product_iter: Vec<T> = vec2
.iter()
.flat_map(|&item_x| vec1.iter().map(move |&item_y| item_x * item_y))
.collect();
Matrix3::from_iterator(outer_product_iter)
}
/// Returns a $`3 \times 3`$ rotation matrix in $`\mathbb{R}^3`$ corresponding to a rotation
/// through `angle` about `axis` raised to the power `power`.
///
/// # Arguments
///
/// * `angle` - The angle of rotation.
/// * `axis` - The axis of rotation.
/// * `power` - The power of rotation.
///
/// # Returns
///
/// The rotation matrix.
#[must_use]
pub fn proper_rotation_matrix(angle: f64, axis: &Vector3<f64>, power: i8) -> Matrix3<f64> {
let normalised_axis = UnitVector3::new_normalize(*axis);
Rotation3::from_axis_angle(&normalised_axis, (f64::from(power)) * angle).into_inner()
}
/// Returns a $`3 \times 3`$ transformation matrix in $`\mathbb{R}^3`$ corresponding to an improper
/// rotation through `angle` about `axis` raised to the power `power`.
///
/// # Arguments
///
/// * `angle` - The angle of rotation.
/// * `axis` - The axis of rotation.
/// * `power` - The power of transformation.
/// * `kind` - The convention in which the improper rotation is defined.
///
/// # Returns
///
/// The transformation matrix.
#[must_use]
pub fn improper_rotation_matrix(
angle: f64,
axis: &Vector3<f64>,
power: i8,
kind: &ImproperRotationKind,
) -> Matrix3<f64> {
let rotmat = proper_rotation_matrix(angle, axis, power);
let normalised_axis = UnitVector3::new_normalize(*axis);
match kind {
ImproperRotationKind::MirrorPlane => {
let refmat = Matrix3::identity()
- 2.0 * (f64::from(power % 2)) * outer(&normalised_axis, &normalised_axis);
refmat * rotmat
}
ImproperRotationKind::InversionCentre => {
if power % 2 == 1 {
-rotmat
} else {
rotmat
}
}
}
}
/// Checks if a sequence of atoms are vertices of a regular polygon.
///
/// # Arguments
///
/// * `atoms` - A sequence of atoms to be tested.
///
/// # Returns
///
/// A flag indicating if the atoms form the vertices of a regular polygon.
///
/// # Panics
///
/// Panics if `atoms` contains fewer than three atoms.
#[must_use]
pub fn check_regular_polygon(atoms: &[&Atom]) -> bool {
assert!(
atoms.len() >= 3,
"Polygons can only be formed by three atoms or more."
);
let tot_m: f64 = atoms.iter().fold(0.0, |acc, atom| acc + atom.atomic_mass);
let com: Point3<f64> = atoms.iter().fold(Point3::origin(), |acc, atom| {
acc + (atom.coordinates * atom.atomic_mass - Point3::origin())
}) / tot_m;
let radial_dists: HashSet<(u64, i16, i8)> = atoms
.iter()
.map(|atom| {
(atom.coordinates - com)
.norm()
.round_factor(atom.threshold)
.integer_decode()
})
.collect();
// Check if all atoms are equidistant from the centre of mass
if radial_dists.len() == 1 {
let regular_angle = 2.0 * std::f64::consts::PI
/ atoms
.len()
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{}` to `f64`.", atoms.len()));
let thresh = atoms
.iter()
.fold(0.0_f64, |acc, atom| acc.max(atom.threshold));
let mut rad_vectors: Vec<Vector3<f64>> =
atoms.iter().map(|atom| atom.coordinates - com).collect();
let (vec_i, vec_j) = itertools::iproduct!(rad_vectors.iter(), rad_vectors.iter())
.max_by(|&(v_i1, v_j1), &(v_i2, v_j2)| {
v_i1.cross(v_j1)
.norm()
.partial_cmp(&v_i2.cross(v_j2).norm())
.expect("Unable to compare the cross products of two vector pairs.")
})
.expect("Unable to find the vector pair with the largest norm cross product.");
let normal = UnitVector3::new_normalize(vec_i.cross(vec_j));
if normal.norm() < thresh {
return false;
}
let vec0 = atoms[0].coordinates - com;
rad_vectors.sort_by(|a, b| {
get_anticlockwise_angle(&vec0, a, &normal, thresh)
.partial_cmp(&get_anticlockwise_angle(&vec0, b, &normal, thresh))
.unwrap_or_else(|| {
panic!(
"Unable to compare anticlockwise angles of {a} and {b} relative to {vec0}."
)
})
});
let vector_pairs: Vec<(&Vector3<f64>, &Vector3<f64>)> =
rad_vectors.iter().circular_tuple_windows().collect();
let mut angles: HashSet<(u64, i16, i8)> = vector_pairs
.iter()
.map(|(v1, v2)| {
get_anticlockwise_angle(v1, v2, &normal, thresh)
.round_factor(thresh)
.integer_decode()
})
.collect();
angles.insert(regular_angle.round_factor(thresh).integer_decode());
angles.len() == 1
} else {
false
}
}
/// Returns the anticlockwise angle $\phi$ from `vec1` to `vec2` when viewed down
/// the `normal` vector.
///
/// This is only well-defined in $\mathbb{R}^3$. The range of the anticlockwise
/// angle is $[0, 2\pi]$.
///
/// # Arguments
///
/// * `vec1` - The first vector.
/// * `vec2` - The second vector.
/// * `normal` - A normal unit vector defining the view.
/// * `thresh` - Threshold for checking if either `vec1` or `vec2` is a null vector.
///
/// # Returns
///
/// The anticlockwise angle $\phi$.
fn get_anticlockwise_angle(
vec1: &Vector3<f64>,
vec2: &Vector3<f64>,
normal: &UnitVector3<f64>,
thresh: f64,
) -> f64 {
assert!(thresh >= std::f64::EPSILON);
assert!(vec1.norm() >= thresh);
assert!(vec2.norm() >= thresh);
let dot = vec1.dot(vec2);
let det = normal.into_inner().dot(&vec1.cross(vec2));
let mut angle = det.atan2(dot);
while angle < -thresh {
angle += 2.0 * std::f64::consts::PI;
}
angle
}
/// Geometrical transformability in three dimensions.
pub trait Transform {
/// Transforms in-place the coordinates about the origin by a given
/// transformation.
///
/// # Arguments
///
/// * mat - A three-dimensional transformation matrix.
fn transform_mut(&mut self, mat: &Matrix3<f64>);
/// Rotates in-place the coordinates through `angle` about `axis`.
///
/// # Arguments
///
/// * angle - The angle of rotation.
/// * axis - The axis of rotation.
fn rotate_mut(&mut self, angle: f64, axis: &Vector3<f64>);
/// Improper-rotates in-place the coordinates through `angle` about `axis`.
///
/// # Arguments
///
/// * `angle` - The angle of rotation.
/// * `axis` - The axis of rotation.
/// * `kind` - The convention in which the improper rotation is defined.
fn improper_rotate_mut(&mut self, angle: f64, axis: &Vector3<f64>, kind: &ImproperRotationKind);
/// Translates in-place the coordinates by a specified translation vector in
/// three dimensions.
///
/// # Arguments
///
/// * `tvec` - The translation vector.
fn translate_mut(&mut self, tvec: &Vector3<f64>);
/// Recentres in-place to put the centre of mass at the origin.
fn recentre_mut(&mut self);
/// Reverses time by reversing in-place the polarity of any magnetic special atoms.
fn reverse_time_mut(&mut self);
/// Clones and transforms the coordinates about the origin by a given
/// transformation.
///
/// # Arguments
///
/// * `mat` - A three-dimensional transformation matrix.
///
/// # Returns
///
/// A transformed copy.
#[must_use]
fn transform(&self, mat: &Matrix3<f64>) -> Self;
/// Clones and rotates the coordinates through `angle` about `axis`.
///
/// # Arguments
///
/// * `angle` - The angle of rotation.
/// * `axis` - The axis of rotation.
///
/// # Returns
///
/// A rotated copy.
#[must_use]
fn rotate(&self, angle: f64, axis: &Vector3<f64>) -> Self;
/// Clones and improper-rotates the coordinates through `angle` about `axis`.
///
/// # Arguments
///
/// * `angle` - The angle of rotation.
/// * `axis` - The axis of rotation.
/// * `kind` - The convention in which the improper rotation is defined.
///
/// # Returns
///
/// An improper-rotated copy.
#[must_use]
fn improper_rotate(&self, angle: f64, axis: &Vector3<f64>, kind: &ImproperRotationKind)
-> Self;
/// Clones and translates in-place the coordinates by a specified
/// translation in three dimensions.
///
/// # Arguments
///
/// * `tvec` - The translation vector.
///
/// # Returns
///
/// A translated copy.
#[must_use]
fn translate(&self, tvec: &Vector3<f64>) -> Self;
/// Clones and recentres to put the centre of mass at the origin.
///
/// # Returns
///
/// A recentred copy.
#[must_use]
fn recentre(&self) -> Self;
/// Clones the molecule and reverses time by reversing the polarity of any magnetic special
/// atoms.
///
/// # Returns
///
/// A time-reversed copy.
#[must_use]
fn reverse_time(&self) -> Self;
}
// ===================
// Positive Hemisphere
// ===================
// ----------------
// ImproperOrdering
// ----------------
/// Enumerated type to handle comparisons symbolically.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
enum ImproperOrdering {
Greater,
GreaterEqual,
Less,
LessEqual,
Equal,
}
impl fmt::Display for ImproperOrdering {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ImproperOrdering::Greater => write!(f, ">"),
ImproperOrdering::GreaterEqual => write!(f, "≥"),
ImproperOrdering::Less => write!(f, "<"),
ImproperOrdering::LessEqual => write!(f, "≤"),
ImproperOrdering::Equal => write!(f, "="),
}
}
}
// ---------
// Cartesian
// ---------
/***
Coordinates
***/
/// Enumerated type to handle Cartesian coordinates symbolically.
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
enum CartesianCoordinate {
X,
Y,
Z,
}
impl CartesianCoordinate {
/// Converts a Cartesian coordinate to a numerical index.
fn to_index(&self) -> usize {
match self {
CartesianCoordinate::X => 0,
CartesianCoordinate::Y => 1,
CartesianCoordinate::Z => 2,
}
}
}
impl fmt::Display for CartesianCoordinate {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
CartesianCoordinate::X => write!(f, "x"),
CartesianCoordinate::Y => write!(f, "y"),
CartesianCoordinate::Z => write!(f, "z"),
}
}
}
/***
Conditions
***/
/// Structure to handle inequality conditions written in terms of Cartesian coordinates.
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct CartesianConditions {
/// The Cartesian conditions. The condititions are satisfied if all of the tuples in any of the
/// inner vectors are satisfied.
conditions: Vec<Vec<(CartesianCoordinate, ImproperOrdering, f64)>>,
}
impl CartesianConditions {
/// Checks if a vector satisfies the current Cartesian conditions. The condititions are
/// satisfied if all of the tuples in any of the inner vectors are satisfied.
///
/// # Arguments
///
/// * `vec` - A vector to check.
/// * `thresh` - A threshold for numerical comparisons.
///
/// # Returns
///
/// A boolean indicating if `vec` satisfies the conditions.
fn check(&self, vec: &Vector3<f64>, thresh: f64) -> bool {
self.conditions.iter().any(|condition_set| {
condition_set.iter().all(|(i, order, target)| match order {
ImproperOrdering::Greater => vec[i.to_index()] > target + thresh,
ImproperOrdering::GreaterEqual => vec[i.to_index()] > target - thresh,
ImproperOrdering::Less => vec[i.to_index()] < target - thresh,
ImproperOrdering::LessEqual => vec[i.to_index()] < target + thresh,
ImproperOrdering::Equal => approx::relative_eq!(
vec[i.to_index()],
target,
max_relative = thresh,
epsilon = thresh
),
})
})
}
}
impl Default for CartesianConditions {
fn default() -> Self {
Self {
conditions: vec![
vec![(CartesianCoordinate::Z, ImproperOrdering::Greater, 0.0)],
vec![
(CartesianCoordinate::Z, ImproperOrdering::Equal, 0.0),
(CartesianCoordinate::X, ImproperOrdering::Greater, 0.0),
],
vec![
(CartesianCoordinate::Z, ImproperOrdering::Equal, 0.0),
(CartesianCoordinate::X, ImproperOrdering::Equal, 0.0),
(CartesianCoordinate::Y, ImproperOrdering::Greater, 0.0),
],
],
}
}
}
impl fmt::Display for CartesianConditions {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "Cartesian conditions:")?;
let conditions = self
.conditions
.iter()
.map(|condition_set| {
condition_set
.iter()
.map(|(i, order, target)| format!("{i} {order} {target}"))
.join(", ")
})
.join("\n or\n");
writeln!(f, "{conditions}")?;
Ok(())
}
}
// ---------
// Spherical
// ---------
/***
Coordinates
***/
/// Enumerated type to handle spherical angular coordinates.
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum SphericalCoordinate {
Theta,
Phi,
}
impl fmt::Display for SphericalCoordinate {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
SphericalCoordinate::Theta => write!(f, "θ"),
SphericalCoordinate::Phi => write!(f, "φ"),
}
}
}
/***
Conditions
***/
/// Structure to handle inequality conditions written in terms of spherical angular coordinates.
#[derive(Debug, Clone, Builder, PartialEq, Serialize, Deserialize)]
pub struct SphericalConditions {
/// The polar axis relative to which the polar angle $`\theta`$ is defined.
#[builder(setter(custom))]
z_basis: Vector3<f64>,
/// The azimuthal axis relative to which the azimuthal angle $`\phi`$ is defined.
#[builder(setter(custom))]
x_basis: Vector3<f64>,
/// The spherical angular conditions. The condititions are satisfied if all of the tuples in
/// any of the inner vectors are satisfied.
#[builder(setter(custom))]
conditions: Vec<Vec<(SphericalCoordinate, ImproperOrdering, f64)>>,
}
impl SphericalConditionsBuilder {
fn z_basis(&mut self, z_bas: Vector3<f64>) -> &mut Self {
self.z_basis = Some(z_bas.normalize());
self
}
fn x_basis(&mut self, x_bas: Vector3<f64>) -> &mut Self {
self.x_basis = Some(x_bas.normalize());
self
}
fn conditions(
&mut self,
conds: &[Vec<(SphericalCoordinate, ImproperOrdering, f64)>],
) -> &mut Self {
self.conditions = Some(conds.to_vec());
self
}
}
impl SphericalConditions {
/// Returns a builder to construct [`Self`].
fn builder() -> SphericalConditionsBuilder {
SphericalConditionsBuilder::default()
}
/// Returns a required angular component of a vector given the current set of spherical
/// conditions that define the polar and azimuthal axes.
///
/// # Arguments
///
/// * `vec` - A vector whose components are to be retrieved.
/// * `coord` - A spherical angular coordinate.
/// * `thresh` - A threshold for checking if cosines of angles are equal to $`\pm 1`$.
///
/// # Returns
///
/// The required component.
fn get_component(&self, vec: &Vector3<f64>, coord: &SphericalCoordinate, thresh: f64) -> f64 {
match coord {
SphericalCoordinate::Theta => {
let cos_theta = vec.dot(&self.z_basis) / (vec.norm() * self.z_basis.norm());
if approx::relative_eq!(cos_theta, 1.0, epsilon = thresh, max_relative = thresh) {
1.0f64.acos()
} else if approx::relative_eq!(
cos_theta,
-1.0,
epsilon = thresh,
max_relative = thresh
) {
(-1.0f64).acos()
} else {
cos_theta.acos()
}
}
SphericalCoordinate::Phi => {
let y_vector = self.z_basis.cross(&self.x_basis).normalize();
let xy_vec = vec - vec.dot(&self.z_basis) / self.z_basis.norm() * self.z_basis;
let sgn_y = xy_vec.dot(&y_vector).signum();
let cos_phi = xy_vec.dot(&self.x_basis) / (xy_vec.norm() * self.x_basis.norm());
if approx::relative_eq!(cos_phi, 1.0, epsilon = thresh, max_relative = thresh) {
sgn_y * 1.0f64.acos()
} else if approx::relative_eq!(
cos_phi,
-1.0,
epsilon = thresh,
max_relative = thresh
) {
sgn_y * (-1.0f64).acos()
} else {
sgn_y * cos_phi.acos()
}
}
}
}
/// Checks if a vector satisfies the current spherical angular conditions. The condititions are
/// satisfied if all of the tuples in any of the inner vectors are satisfied.
///
/// # Arguments
///
/// * `vec` - A vector to check.
/// * `thresh` - A threshold for numerical comparisons.
///
/// # Returns
///
/// A boolean indicating if `vec` satisfies the conditions.
fn check(&self, vec: &Vector3<f64>, thresh: f64) -> bool {
self.conditions.iter().any(|condition_set| {
condition_set.iter().all(|(i, order, target)| {
let component = self.get_component(vec, i, thresh);
match order {
ImproperOrdering::Greater => component > target + thresh,
ImproperOrdering::GreaterEqual => component > target - thresh,
ImproperOrdering::Less => component < target - thresh,
ImproperOrdering::LessEqual => component < target + thresh,
ImproperOrdering::Equal => approx::relative_eq!(
component,
target,
max_relative = thresh,
epsilon = thresh
),
}
})
})
}
/// Constructs a positive hemisphere where the equator consists of an odd number of equal and
/// disjoint arcs.
///
/// The centre of the first arc is always at $`\phi = 0`$. Each arc is open at the
/// smaller-$`\phi`$ end and closed at the larger-$`\phi`$ end. It can be shown (see below)
/// that, as `n` is odd, no arcs can cross between $`+\pi`$ and $`-\pi`$.
///
/// For $`n`$ odd, the centres of the most-positive and most-negative arcs are given by
///
/// ```math
/// \pm \frac{2\pi}{n} \times \frac{n - 1}{2} = \pm \pi \times \frac{n - 1}{n}.
/// ```
///
/// Each arc has width $`\pi / n`$, so the most positive or most negative arc
/// $`\phi`$-coordinate are
///
/// ```math
/// \pm \left( \pi \times \frac{n - 1}{n} + \frac{\pi}{2n} \right)
/// = \pm \pi \frac{2n - 1}{2n},
/// ```
///
/// thus showing clearly that the arcs never cross from $`+\pi`$ to $`-\pi`$ and *vice versa*.
///
///
/// # Arguments
///
/// * `z_basis` - The polar axis.
/// * `x_basis` - The azimuthal axis.
/// * `n` - An odd number specifying the number of equal and disjoint arcs belonging to the
/// positive hemisphere on the equator.
///
/// # Returns
///
/// The required spherical angular conditions.
fn new_disjoint_equatorial_arcs(
z_basis: Vector3<f64>,
x_basis: Vector3<f64>,
n: usize,
) -> Self {
assert!(n > 0 && n.rem_euclid(2) == 1);
let n_f64 = n
.to_f64()
.expect("Unable to convert the number of arcs to `f64`.");
let half_arc = std::f64::consts::PI / (2.0 * n_f64);
let sep = 2.0 * std::f64::consts::PI / n_f64;
let half_pi = 0.5 * std::f64::consts::PI;
let mut conditions = vec![vec![
(
SphericalCoordinate::Theta,
ImproperOrdering::GreaterEqual,
0.0,
),
(SphericalCoordinate::Theta, ImproperOrdering::Less, half_pi),
]];
let phi_conditions = (0..n)
.map(|i| {
let (centre, _) = normalise_rotation_angle(i.to_f64().unwrap() * sep, f64::EPSILON);
let min_exc = centre - half_arc;
let max_inc = centre + half_arc;
vec![
(SphericalCoordinate::Theta, ImproperOrdering::Equal, half_pi),
(SphericalCoordinate::Phi, ImproperOrdering::Greater, min_exc),
(
SphericalCoordinate::Phi,
ImproperOrdering::LessEqual,
max_inc,
),
]
})
.collect_vec();
conditions.extend(phi_conditions.into_iter());
Self::builder()
.z_basis(z_basis)
.x_basis(x_basis)
.conditions(&conditions)
.build()
.expect("Unable to construct a set of spherical-coordinate conditions.")
}
}
impl Default for SphericalConditions {
fn default() -> Self {
let half_pi = 0.5 * std::f64::consts::PI;
let conditions = vec![
vec![
(
SphericalCoordinate::Theta,
ImproperOrdering::GreaterEqual,
0.0,
),
(SphericalCoordinate::Theta, ImproperOrdering::Less, half_pi),
],
vec![
(SphericalCoordinate::Theta, ImproperOrdering::Equal, half_pi),
(
SphericalCoordinate::Phi,
ImproperOrdering::Greater,
-half_pi,
),
(
SphericalCoordinate::Phi,
ImproperOrdering::LessEqual,
half_pi,
),
],
];
Self::builder()
.z_basis(Vector3::z())
.x_basis(Vector3::x())
.conditions(&conditions)
.build()
.expect("Unable to construct a set of spherical-coordinate conditions.")
}
}
impl fmt::Display for SphericalConditions {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "Spherical conditions:")?;
writeln!(f, "Polar axis (z-like): {:?}", self.z_basis)?;
writeln!(f, "Azimuthal axis (x-like): {:?}", self.x_basis)?;
let conditions = self
.conditions
.iter()
.map(|condition_set| {
condition_set
.iter()
.map(|(i, order, target)| format!("{i} {order} {target}"))
.join(", ")
})
.join("\n or\n");
writeln!(f, "{conditions}")?;
Ok(())
}
}
// ------------------
// PositiveHemisphere
// ------------------
/// Enumerated type to handle positive hemispheres in Cartesian or spherical conditions.
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub enum PositiveHemisphere {
Cartesian(CartesianConditions),
Spherical(SphericalConditions),
}
impl PositiveHemisphere {
/// Constructs a new standard positive hemisphere in the Cartesian form.
pub fn new_standard_cartesian() -> Self {
Self::Cartesian(CartesianConditions::default())
}
/// Constructs a new standard positive hemisphere in the spherical form.
pub fn new_standard_spherical() -> Self {
Self::Spherical(SphericalConditions::default())
}
/// Constructs a new positive hemisphere in the spherical form with equal and disjoint arcs on
/// the equator.
///
/// # Arguments
///
/// `z_basis` - The polar axis.
/// `x_basis` - The azimuthal axis.
/// `n` - An odd number specifying the number of equal and disjoint arcs belonging to the
/// positive hemisphere on the equator.
///
/// # Returns
///
/// The required positive hemisphere.
pub fn new_spherical_disjoint_equatorial_arcs(
z_basis: Vector3<f64>,
x_basis: Vector3<f64>,
n: usize,
) -> Self {
Self::Spherical(SphericalConditions::new_disjoint_equatorial_arcs(
z_basis, x_basis, n,
))
}
/// Check if a rotation axis is in the current positive hemisphere.
///
/// # Arguments
///
/// * axis - An axis of rotation.
/// * thresh - Threshold for comparisons.
///
/// # Returns
///
/// Returns `true` if `axis` is in the positive hemisphere.
///
/// # Panics
///
/// Panics if the axis is a null vector.
pub fn check_positive_pole(&self, axis: &Vector3<f64>, thresh: f64) -> bool {
let normalised_axis = axis.normalize();
match self {
PositiveHemisphere::Cartesian(cart_conditions) => {
cart_conditions.check(&normalised_axis, thresh)
}
PositiveHemisphere::Spherical(sph_conditions) => {
sph_conditions.check(&normalised_axis, thresh)
}
}
}
/// Returns the positive pole of a rotation axis with respect to the current positive
/// hemisphere.
///
/// # Arguments
///
/// * axis - An axis of rotation.
/// * thresh - Threshold for comparisons.
///
/// # Returns
///
/// The positive pole of `axis`.
///
/// # Panics
///
/// Panics if the resulting pole is a null vector.
pub fn get_positive_pole(&self, axis: &Vector3<f64>, thresh: f64) -> Vector3<f64> {
let normalised_axis = axis.normalize();
if self.check_positive_pole(&normalised_axis, thresh) {
normalised_axis
} else {
-normalised_axis
}
}
}
impl Default for PositiveHemisphere {
fn default() -> Self {
Self::Cartesian(CartesianConditions::default())
}
}
impl fmt::Display for PositiveHemisphere {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
PositiveHemisphere::Cartesian(cart_conds) => write!(f, "{cart_conds}"),
PositiveHemisphere::Spherical(sph_conds) => write!(f, "{sph_conds}"),
}
}
}
/// Returns the standard positive pole of a rotation axis.
///
/// The definition of standard positive poles can be found in S.L. Altmann, Rotations,
/// Quaternions, and Double Groups (Dover Publications, Inc., New York, 2005) (Chapter 9).
///
/// # Arguments
///
/// * axis - An axis of rotation (proper or improper).
/// * thresh - Threshold for comparisons.
///
/// # Returns
///
/// The positive pole of `axis`.
///
/// # Panics
///
/// Panics if the resulting pole is a null vector.
#[must_use]
pub fn get_standard_positive_pole(axis: &Vector3<f64>, thresh: f64) -> Vector3<f64> {
let poshem = PositiveHemisphere::new_standard_cartesian();
poshem.get_positive_pole(axis, thresh)
}
/// Check if a rotation axis is in the standard positive hemisphere.
///
/// The definition of the standard positive hemisphere can be found in S.L. Altmann, Rotations,
/// Quaternions, and Double Groups (Dover Publications, Inc., New York, 2005) (Chapter 9).
///
/// # Arguments
///
/// * axis - An axis of rotation.
/// * thresh - Threshold for comparisons.
///
/// # Returns
///
/// Returns `true` if `axis` is in the positive hemisphere.
///
/// # Panics
///
/// Panics if the axis is a null vector.
#[must_use]
pub fn check_standard_positive_pole(axis: &Vector3<f64>, thresh: f64) -> bool {
let poshem = PositiveHemisphere::new_standard_cartesian();
poshem.check_positive_pole(axis, thresh)
}