1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
//! Miscellaneous items.

use std::collections::hash_map::DefaultHasher;
use std::error::Error;
use std::fmt;
use std::hash::{Hash, Hasher};

use itertools::{Itertools, MultiProduct};
use log;
use ndarray::{stack, Array1, Array2, Axis};
use num_complex::ComplexFloat;

/// Trait to enable floating point numbers to be hashed.
pub trait HashableFloat {
    /// Returns a float rounded after being multiplied by a factor.
    ///
    /// Let $`x`$ be a float, $`k`$ a factor, and $`[\cdot]`$ denote the
    /// rounding-to-integer operation. This function yields $`[x \times k] / k`$.
    ///
    /// Arguments
    ///
    /// * `threshold` - The inverse $`k^{-1}`$ of the factor $`k`$ used in the
    /// rounding of the float.
    ///
    /// Returns
    ///
    /// The rounded float.
    #[must_use]
    fn round_factor(self, threshold: Self) -> Self;

    /// Returns the mantissa-exponent-sign triplet for a float.
    ///
    /// Reference: <https://stackoverflow.com/questions/39638363/how-can-i-use-a-hashmap-with-f64-as-key-in-rust>
    ///
    /// # Arguments
    ///
    /// * `val` - A floating point number.
    ///
    /// # Returns
    ///
    /// The corresponding mantissa-exponent-sign triplet.
    fn integer_decode(self) -> (u64, i16, i8);
}

impl HashableFloat for f64 {
    fn round_factor(self, factor: f64) -> Self {
        (self / factor).round() * factor + 0.0
    }

    fn integer_decode(self) -> (u64, i16, i8) {
        let bits: u64 = self.to_bits();
        let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
        let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
        let mantissa = if exponent == 0 {
            (bits & 0x000f_ffff_ffff_ffff) << 1
        } else {
            (bits & 0x000f_ffff_ffff_ffff) | 0x0010_0000_0000_0000
        };

        exponent -= 1023 + 52;
        (mantissa, exponent, sign)
    }
}

/// Returns the hash value of a hashable struct.
///
/// Arguments
///
/// * `t` - A struct of a hashable type.
///
/// Returns
///
/// The hash value.
pub fn calculate_hash<T: Hash>(t: &T) -> u64 {
    let mut s = DefaultHasher::new();
    t.hash(&mut s);
    s.finish()
}

/// Trait for performing repeated products of iterators.
pub trait ProductRepeat: Iterator + Clone
where
    Self::Item: Clone,
{
    /// Rust implementation of Python's `itertools.product()` with repetition.
    ///
    /// From <https://stackoverflow.com/a/68231315>.
    ///
    /// # Arguments
    ///
    /// * `repeat` - Number of repetitions of the given iterator.
    ///
    /// # Returns
    ///
    /// A [`MultiProduct`] iterator.
    fn product_repeat(self, repeat: usize) -> MultiProduct<Self> {
        std::iter::repeat(self)
            .take(repeat)
            .multi_cartesian_product()
    }
}

impl<T: Iterator + Clone> ProductRepeat for T where T::Item: Clone {}

// =============
// Gram--Schmidt
// =============

/// Error during Gram--Schmidt orthogonalisation.
#[derive(Debug, Clone)]
pub struct GramSchmidtError<'a, T> {
    pub mat: Option<&'a Array2<T>>,
    pub vecs: Option<&'a [Array1<T>]>,
}

impl<'a, T: fmt::Display + fmt::Debug> fmt::Display for GramSchmidtError<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(f, "Unable to perform Gram--Schmidt orthogonalisation on:",)?;
        if let Some(mat) = self.mat {
            writeln!(f, "{mat}")?;
        } else if let Some(vecs) = self.vecs {
            for vec in vecs {
                writeln!(f, "{vec}")?;
            }
        } else {
            writeln!(f, "Unspecified basis vectors for Gram--Schmidt.")?;
        }
        Ok(())
    }
}

impl<'a, T: fmt::Display + fmt::Debug> Error for GramSchmidtError<'a, T> {}

/// Performs modified Gram--Schmidt orthonormalisation on a set of column vectors in a matrix with
/// respect to the complex-symmetric or Hermitian dot product.
///
/// # Arguments
///
/// * `vmat` - Matrix containing column vectors forming a basis for a subspace.
/// * `complex_symmetric` - A boolean indicating if the vector dot product is complex-symmetric. If
/// `false`, the conventional Hermitian dot product is used.
/// * `thresh` - A threshold for determining self-orthogonal vectors.
///
/// # Returns
///
/// The orthonormal vectors forming a basis for the same subspace collected as column vectors in a
/// matrix.
///
/// # Errors
///
/// Errors when the orthonormalisation procedure fails, which occurs when there is linear dependency
/// between the basis vectors and/or when self-orthogonal vectors are encountered.
pub fn complex_modified_gram_schmidt<T>(
    vmat: &Array2<T>,
    complex_symmetric: bool,
    thresh: T::Real,
) -> Result<Array2<T>, GramSchmidtError<T>>
where
    T: ComplexFloat + fmt::Display + 'static,
{
    let mut us: Vec<Array1<T>> = Vec::with_capacity(vmat.shape()[1]);
    let mut us_sq_norm: Vec<T> = Vec::with_capacity(vmat.shape()[1]);
    for (i, vi) in vmat.columns().into_iter().enumerate() {
        // u[i] now initialised with v[i]
        us.push(vi.to_owned());

        // Project ui onto all uj (0 <= j < i)
        // This is the 'modified' part of Gram--Schmidt. We project the current (and being updated)
        // ui onto uj, rather than projecting vi onto uj. This enhances numerical stability.
        for j in 0..i {
            let p_uj_ui = if complex_symmetric {
                us[j].t().dot(&us[i]) / us_sq_norm[j]
            } else {
                us[j].t().map(|x| x.conj()).dot(&us[i]) / us_sq_norm[j]
            };
            us[i] = &us[i] - us[j].map(|&x| x * p_uj_ui);
        }

        // Evaluate the squared norm of ui which will no longer be changed after this iteration.
        // us_sq_norm[i] now available.
        let us_sq_norm_i = if complex_symmetric {
            us[i].t().dot(&us[i])
        } else {
            us[i].t().map(|x| x.conj()).dot(&us[i])
        };
        if us_sq_norm_i.abs() < thresh {
            log::error!("A zero-norm vector found: {}", us[i]);
            return Err(GramSchmidtError {
                mat: Some(vmat),
                vecs: None,
            });
        }
        us_sq_norm.push(us_sq_norm_i);
    }

    // Normalise ui
    for i in 0..us.len() {
        us[i].mapv_inplace(|x| x / us_sq_norm[i].sqrt());
    }

    let ortho_check = us.iter().enumerate().all(|(i, ui)| {
        us.iter().enumerate().all(|(j, uj)| {
            let ov_ij = if complex_symmetric {
                ui.dot(uj)
            } else {
                ui.map(|x| x.conj()).dot(uj)
            };
            i == j || ov_ij.abs() < thresh
        })
    });

    if ortho_check {
        stack(Axis(1), &us.iter().map(|u| u.view()).collect_vec()).map_err(|err| {
            log::error!("{}", err);
            GramSchmidtError {
                mat: Some(vmat),
                vecs: None
            }
        })
    } else {
        log::error!("Post-Gram--Schmidt orthogonality check failed.");
        Err(GramSchmidtError {
            mat: Some(vmat),
            vecs: None,
        })
    }
}