1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
//! Miscellaneous items.
use std::collections::hash_map::DefaultHasher;
use std::error::Error;
use std::fmt;
use std::hash::{Hash, Hasher};
use itertools::{Itertools, MultiProduct};
use log;
use ndarray::{stack, Array1, Array2, Axis};
use num_complex::ComplexFloat;
/// Trait to enable floating point numbers to be hashed.
pub trait HashableFloat {
/// Returns a float rounded after being multiplied by a factor.
///
/// Let $`x`$ be a float, $`k`$ a factor, and $`[\cdot]`$ denote the
/// rounding-to-integer operation. This function yields $`[x \times k] / k`$.
///
/// Arguments
///
/// * `threshold` - The inverse $`k^{-1}`$ of the factor $`k`$ used in the
/// rounding of the float.
///
/// Returns
///
/// The rounded float.
#[must_use]
fn round_factor(self, threshold: Self) -> Self;
/// Returns the mantissa-exponent-sign triplet for a float.
///
/// Reference: <https://stackoverflow.com/questions/39638363/how-can-i-use-a-hashmap-with-f64-as-key-in-rust>
///
/// # Arguments
///
/// * `val` - A floating point number.
///
/// # Returns
///
/// The corresponding mantissa-exponent-sign triplet.
fn integer_decode(self) -> (u64, i16, i8);
}
impl HashableFloat for f64 {
fn round_factor(self, factor: f64) -> Self {
(self / factor).round() * factor + 0.0
}
fn integer_decode(self) -> (u64, i16, i8) {
let bits: u64 = self.to_bits();
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 {
(bits & 0x000f_ffff_ffff_ffff) << 1
} else {
(bits & 0x000f_ffff_ffff_ffff) | 0x0010_0000_0000_0000
};
exponent -= 1023 + 52;
(mantissa, exponent, sign)
}
}
/// Returns the hash value of a hashable struct.
///
/// Arguments
///
/// * `t` - A struct of a hashable type.
///
/// Returns
///
/// The hash value.
pub fn calculate_hash<T: Hash>(t: &T) -> u64 {
let mut s = DefaultHasher::new();
t.hash(&mut s);
s.finish()
}
/// Trait for performing repeated products of iterators.
pub trait ProductRepeat: Iterator + Clone
where
Self::Item: Clone,
{
/// Rust implementation of Python's `itertools.product()` with repetition.
///
/// From <https://stackoverflow.com/a/68231315>.
///
/// # Arguments
///
/// * `repeat` - Number of repetitions of the given iterator.
///
/// # Returns
///
/// A [`MultiProduct`] iterator.
fn product_repeat(self, repeat: usize) -> MultiProduct<Self> {
std::iter::repeat(self)
.take(repeat)
.multi_cartesian_product()
}
}
impl<T: Iterator + Clone> ProductRepeat for T where T::Item: Clone {}
// =============
// Gram--Schmidt
// =============
/// Error during Gram--Schmidt orthogonalisation.
#[derive(Debug, Clone)]
pub struct GramSchmidtError<'a, T> {
pub mat: Option<&'a Array2<T>>,
pub vecs: Option<&'a [Array1<T>]>,
}
impl<'a, T: fmt::Display + fmt::Debug> fmt::Display for GramSchmidtError<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(f, "Unable to perform Gram--Schmidt orthogonalisation on:",)?;
if let Some(mat) = self.mat {
writeln!(f, "{mat}")?;
} else if let Some(vecs) = self.vecs {
for vec in vecs {
writeln!(f, "{vec}")?;
}
} else {
writeln!(f, "Unspecified basis vectors for Gram--Schmidt.")?;
}
Ok(())
}
}
impl<'a, T: fmt::Display + fmt::Debug> Error for GramSchmidtError<'a, T> {}
/// Performs modified Gram--Schmidt orthonormalisation on a set of column vectors in a matrix with
/// respect to the complex-symmetric or Hermitian dot product.
///
/// # Arguments
///
/// * `vmat` - Matrix containing column vectors forming a basis for a subspace.
/// * `complex_symmetric` - A boolean indicating if the vector dot product is complex-symmetric. If
/// `false`, the conventional Hermitian dot product is used.
/// * `thresh` - A threshold for determining self-orthogonal vectors.
///
/// # Returns
///
/// The orthonormal vectors forming a basis for the same subspace collected as column vectors in a
/// matrix.
///
/// # Errors
///
/// Errors when the orthonormalisation procedure fails, which occurs when there is linear dependency
/// between the basis vectors and/or when self-orthogonal vectors are encountered.
pub fn complex_modified_gram_schmidt<T>(
vmat: &Array2<T>,
complex_symmetric: bool,
thresh: T::Real,
) -> Result<Array2<T>, GramSchmidtError<T>>
where
T: ComplexFloat + fmt::Display + 'static,
{
let mut us: Vec<Array1<T>> = Vec::with_capacity(vmat.shape()[1]);
let mut us_sq_norm: Vec<T> = Vec::with_capacity(vmat.shape()[1]);
for (i, vi) in vmat.columns().into_iter().enumerate() {
// u[i] now initialised with v[i]
us.push(vi.to_owned());
// Project ui onto all uj (0 <= j < i)
// This is the 'modified' part of Gram--Schmidt. We project the current (and being updated)
// ui onto uj, rather than projecting vi onto uj. This enhances numerical stability.
for j in 0..i {
let p_uj_ui = if complex_symmetric {
us[j].t().dot(&us[i]) / us_sq_norm[j]
} else {
us[j].t().map(|x| x.conj()).dot(&us[i]) / us_sq_norm[j]
};
us[i] = &us[i] - us[j].map(|&x| x * p_uj_ui);
}
// Evaluate the squared norm of ui which will no longer be changed after this iteration.
// us_sq_norm[i] now available.
let us_sq_norm_i = if complex_symmetric {
us[i].t().dot(&us[i])
} else {
us[i].t().map(|x| x.conj()).dot(&us[i])
};
if us_sq_norm_i.abs() < thresh {
log::error!("A zero-norm vector found: {}", us[i]);
return Err(GramSchmidtError {
mat: Some(vmat),
vecs: None,
});
}
us_sq_norm.push(us_sq_norm_i);
}
// Normalise ui
for i in 0..us.len() {
us[i].mapv_inplace(|x| x / us_sq_norm[i].sqrt());
}
let ortho_check = us.iter().enumerate().all(|(i, ui)| {
us.iter().enumerate().all(|(j, uj)| {
let ov_ij = if complex_symmetric {
ui.dot(uj)
} else {
ui.map(|x| x.conj()).dot(uj)
};
i == j || ov_ij.abs() < thresh
})
});
if ortho_check {
stack(Axis(1), &us.iter().map(|u| u.view()).collect_vec()).map_err(|err| {
log::error!("{}", err);
GramSchmidtError {
mat: Some(vmat),
vecs: None
}
})
} else {
log::error!("Post-Gram--Schmidt orthogonality check failed.");
Err(GramSchmidtError {
mat: Some(vmat),
vecs: None,
})
}
}