1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
//! Molecular structures.
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::fs;
use std::io::{BufWriter, Write};
use std::path::Path;
use std::process;
use anyhow;
use itertools::Itertools;
use log;
use nalgebra::{DVector, Matrix3, Point3, Vector3};
use ndarray::{Array2, ShapeBuilder};
use ndarray_linalg::{Eigh, UPLO};
use num_traits::ToPrimitive;
use serde::{Deserialize, Serialize};
use crate::auxiliary::atom::{Atom, AtomKind, ElementMap};
use crate::auxiliary::geometry::{self, ImproperRotationKind, Transform};
use crate::permutation::{permute_inplace, PermutableCollection, Permutation};
#[cfg(test)]
#[path = "sea_tests.rs"]
mod sea_tests;
#[cfg(test)]
#[path = "molecule_tests.rs"]
mod molecule_tests;
// ==================
// Struct definitions
// ==================
/// Structure containing the atoms constituting a molecule.
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Molecule {
/// The atoms constituting this molecule.
pub atoms: Vec<Atom>,
/// Optional special atom to represent the electric fields applied to this molecule.
pub electric_atoms: Option<Vec<Atom>>,
/// Optional special atoms to represent the magnetic fields applied to this molecule.
pub magnetic_atoms: Option<Vec<Atom>>,
/// A threshold for approximate equality comparisons.
pub threshold: f64,
}
impl Molecule {
/// Parses an XYZ file to construct a molecule.
///
/// # Arguments
///
/// * `filename` - The XYZ file to be parsed.
///
/// # Returns
///
/// The parsed [`Molecule`] structure.
///
/// # Panics
///
/// Panics when unable to parse the provided XYZ file.
#[must_use]
pub fn from_xyz<P: AsRef<Path>>(filename: P, thresh: f64) -> Self {
let contents = fs::read_to_string(&filename).unwrap_or_else(|err| {
log::error!("Unable to read file {}.", filename.as_ref().display());
log::error!("{}", err);
process::exit(1);
});
let mut atoms: Vec<Atom> = vec![];
let emap = ElementMap::new();
let mut n_atoms = 0usize;
for (i, line) in contents.lines().enumerate() {
if i == 0 {
n_atoms = line.parse::<usize>().unwrap_or_else(|err| {
log::error!(
"Unable to read number of atoms in {}.",
filename.as_ref().display()
);
log::error!("{}", err);
process::exit(1);
});
} else if i == 1 {
continue;
} else {
atoms.push(
Atom::from_xyz(line, &emap, thresh)
.unwrap_or_else(|| panic!("Unable to parse {line} to give an atom.")),
);
}
}
assert_eq!(
atoms.len(),
n_atoms,
"Expected {} atoms, got {} instead.",
n_atoms,
atoms.len()
);
Molecule {
atoms,
electric_atoms: None,
magnetic_atoms: None,
threshold: thresh,
}
}
/// Writes the ordinary atoms in the molecule to an XYZ file.
///
/// # Arguments
///
/// * `filename` - The XYZ file to be written.
pub fn to_xyz<P: AsRef<Path>>(&self, filename: P) -> Result<(), anyhow::Error> {
let mut f = BufWriter::new(fs::File::create(filename)?);
writeln!(f, "{}", self.atoms.len())?;
writeln!(f, "")?;
for atom in self.atoms.iter() {
writeln!(f, "{}", atom.to_xyz())?;
}
Ok(())
}
/// Construct a molecule from an array of atoms.
///
/// # Arguments
///
/// * `all_atoms` - The atoms (of all types) constituting this molecule.
/// * `threshold` - A threshold for approximate equality comparisons.
///
/// # Returns
///
/// The constructed [`Molecule`] struct.
///
/// # Panics
///
/// Panics when the numbers of fictitious special atoms, if any, are invalid. It is expected
/// that, when present, there are two magnetic special atoms and/or one electric special atom.
#[must_use]
pub fn from_atoms(all_atoms: &[Atom], thresh: f64) -> Self {
let mut atoms: Vec<Atom> = all_atoms
.iter()
.filter(|atom| matches!(atom.kind, AtomKind::Ordinary))
.cloned()
.collect();
atoms.iter_mut().for_each(|atom| atom.threshold = thresh);
let mut magnetic_atoms_vec: Vec<Atom> = all_atoms
.iter()
.filter(|atom| matches!(atom.kind, AtomKind::Magnetic(_)))
.cloned()
.collect();
magnetic_atoms_vec
.iter_mut()
.for_each(|atom| atom.threshold = thresh);
let magnetic_atoms = if magnetic_atoms_vec.is_empty() {
None
} else {
Some(magnetic_atoms_vec)
};
let mut electric_atoms_vec: Vec<Atom> = all_atoms
.iter()
.filter(|atom| matches!(atom.kind, AtomKind::Electric(_)))
.cloned()
.collect();
electric_atoms_vec
.iter_mut()
.for_each(|atom| atom.threshold = thresh);
let electric_atoms = if electric_atoms_vec.is_empty() {
None
} else {
Some(electric_atoms_vec)
};
Molecule {
atoms,
electric_atoms,
magnetic_atoms,
threshold: thresh,
}
}
/// Constructs a new molecule containing only the ordinary atoms in this molecule.
#[must_use]
pub fn molecule_ordinary_atoms(&self) -> Self {
Self::from_atoms(&self.atoms, self.threshold)
}
/// Constructs a new molecule containing only the fictitious magnetic atoms in this molecule,
/// if any.
///
/// # Returns
///
/// Returns `None` if this molecule has no fictitious magnetic atoms.
#[must_use]
pub fn molecule_magnetic_atoms(&self) -> Option<Self> {
Some(Self::from_atoms(
self.magnetic_atoms.as_ref()?,
self.threshold,
))
}
/// Constructs a new molecule containing only the fictitious electric atoms in this molecule,
/// if any.
///
/// # Returns
///
/// Returns `None` if this molecule has no fictitious electric atoms.
#[must_use]
pub fn molecule_electric_atoms(&self) -> Option<Self> {
Some(Self::from_atoms(
self.electric_atoms.as_ref()?,
self.threshold,
))
}
/// Retrieves a vector of references to all atoms in this molecule, including special ones, if
/// any.
///
/// # Returns
///
/// All atoms in this molecule.
#[must_use]
pub fn get_all_atoms(&self) -> Vec<&Atom> {
let mut atoms: Vec<&Atom> = vec![];
for atom in &self.atoms {
atoms.push(atom);
}
if let Some(magnetic_atoms) = &self.magnetic_atoms {
for magnetic_atom in magnetic_atoms.iter() {
atoms.push(magnetic_atom);
}
}
if let Some(electric_atoms) = &self.electric_atoms {
for electric_atom in electric_atoms.iter() {
atoms.push(electric_atom);
}
}
atoms
}
/// Retrieves a vector of mutable references to all atoms in this molecule, including special
/// ones, if any.
///
/// # Returns
///
/// All atoms in this molecule.
#[must_use]
pub fn get_all_atoms_mut(&mut self) -> Vec<&mut Atom> {
let mut atoms: Vec<&mut Atom> = vec![];
for atom in &mut self.atoms {
atoms.push(atom);
}
if let Some(magnetic_atoms) = &mut self.magnetic_atoms {
for magnetic_atom in magnetic_atoms.iter_mut() {
atoms.push(magnetic_atom);
}
}
if let Some(electric_atoms) = &mut self.electric_atoms {
for electric_atom in electric_atoms.iter_mut() {
atoms.push(electric_atom);
}
}
atoms
}
/// Calculates the centre of mass of the molecule.
///
/// This does not take into account fictitious special atoms.
///
/// # Returns
///
/// The centre of mass.
#[must_use]
pub fn calc_com(&self) -> Point3<f64> {
let atoms = &self.atoms;
let mut com: Point3<f64> = Point3::origin();
if atoms.is_empty() {
return com;
}
let mut tot_m: f64 = 0.0;
for atom in atoms.iter() {
let m: f64 = atom.atomic_mass;
com += atom.coordinates * m - Point3::origin();
tot_m += m;
}
com *= 1.0 / tot_m;
com
}
/// Calculates the inertia tensor of the molecule.
///
/// This *does* take into account fictitious special atoms.
///
/// # Arguments
///
/// * `origin` - An origin about which the inertia tensor is evaluated.
///
/// # Returns
///
/// The inertia tensor as a $`3 \times 3`$ matrix.
#[must_use]
pub fn calc_inertia_tensor(&self, origin: &Point3<f64>) -> Matrix3<f64> {
let atoms = self.get_all_atoms();
let mut inertia_tensor = Matrix3::zeros();
for atom in &atoms {
let rel_coordinates: Vector3<f64> = atom.coordinates - origin;
for i in 0..3 {
for j in 0..=i {
if i == j {
inertia_tensor[(i, j)] += atom.atomic_mass
* (rel_coordinates.norm_squared()
- rel_coordinates[i] * rel_coordinates[j]);
} else {
inertia_tensor[(i, j)] -=
atom.atomic_mass * rel_coordinates[i] * rel_coordinates[j];
inertia_tensor[(j, i)] -=
atom.atomic_mass * rel_coordinates[j] * rel_coordinates[i];
}
}
}
}
log::debug!("Origin for inertia tensor:");
for component in origin.iter() {
log::debug!(" {component:+.14}");
}
log::debug!("Inertia tensor:\n{}", inertia_tensor);
inertia_tensor
}
/// Calculates the moments of inertia and the corresponding principal axes.
///
/// This *does* take into account fictitious special atoms.
///
/// # Returns
///
/// * The moments of inertia in ascending order.
/// * The corresponding principal axes.
///
/// # Panics
///
/// Panics when any of the moments of inertia cannot be compared.
#[must_use]
pub fn calc_moi(&self) -> ([f64; 3], [Vector3<f64>; 3]) {
let inertia_tensor = Array2::from_shape_vec(
(3, 3).f(),
self.calc_inertia_tensor(&self.calc_com())
.into_iter()
.copied()
.collect::<Vec<_>>(),
)
.expect("Unable to construct the inertia tensor.");
let (eigvals, eigvecs) = inertia_tensor
.eigh(UPLO::Lower)
.expect("Unable to diagonalise the inertia tensor.");
let eigenvalues: Vec<f64> = eigvals.into_iter().collect::<Vec<_>>();
let eigenvectors = eigvecs
.columns()
.into_iter()
.map(|col| Vector3::from_iterator(col.into_owned()))
.collect::<Vec<_>>();
let mut eigen_tuple: Vec<(f64, _)> = eigenvalues
.iter()
.copied()
.zip(eigenvectors.iter().copied())
.collect();
eigen_tuple.sort_by(|(eigval0, _), (eigval1, _)| {
eigval0
.partial_cmp(eigval1)
.unwrap_or_else(|| panic!("{eigval0} and {eigval1} cannot be compared."))
});
let (sorted_eigenvalues, sorted_eigenvectors): (Vec<f64>, Vec<_>) =
eigen_tuple.into_iter().unzip();
let result = (
[
sorted_eigenvalues[0],
sorted_eigenvalues[1],
sorted_eigenvalues[2],
],
[
geometry::get_standard_positive_pole(
&Vector3::new(
sorted_eigenvectors[0][(0, 0)],
sorted_eigenvectors[0][(1, 0)],
sorted_eigenvectors[0][(2, 0)],
),
self.threshold,
),
geometry::get_standard_positive_pole(
&Vector3::new(
sorted_eigenvectors[1][(0, 0)],
sorted_eigenvectors[1][(1, 0)],
sorted_eigenvectors[1][(2, 0)],
),
self.threshold,
),
geometry::get_standard_positive_pole(
&Vector3::new(
sorted_eigenvectors[2][(0, 0)],
sorted_eigenvectors[2][(1, 0)],
sorted_eigenvectors[2][(2, 0)],
),
self.threshold,
),
],
);
result
.0
.iter()
.zip(result.1.iter())
.for_each(|(moi, axis)| {
log::debug!("Principal moment of inertia: {moi:.14}");
log::debug!(" -- Principal axis:\n{axis}");
});
result
}
/// Determines the interatomic distance matrix and the indices of symmetry-equivalent atoms.
///
/// This *does* take into account fictitious special atoms.
///
/// # Returns
///
/// * The interatomic distance matrix where the distances in each column are sorted in ascending
/// order. Column $`j`$ contains the interatomic distances from atom $`j`$ to all other atoms
/// (both ordinary and fictitious) in the molecule. Also note that all atoms (both ordinary and
/// fictitious) are included here, so the matrix is square.
/// * A vector of vectors of symmetry-equivalent atom indices. Each inner vector contains
/// indices of atoms in one SEA group.
pub fn calc_interatomic_distance_matrix(&self) -> (Array2<f64>, Vec<Vec<usize>>) {
let all_atoms = &self.get_all_atoms();
let all_coords: Vec<_> = all_atoms.iter().map(|atm| atm.coordinates).collect();
let mut dist_columns: Vec<DVector<f64>> = vec![];
let mut sorted_dist_columns: Vec<DVector<f64>> = vec![];
// Determine indices of symmetry-equivalent atoms
let mut equiv_indicess: Vec<Vec<usize>> = vec![vec![0]];
for (j, coord_j) in all_coords.iter().enumerate() {
// column_j is the j-th column in the interatomic distance matrix. This column contains
// distances from ordinary atom j to all other atoms (both ordinary and fictitious) in
// the molecule.
let column_j = all_coords
.iter()
.map(|coord_i| (coord_j - coord_i).norm())
.collect_vec();
let mut sorted_column_j = column_j.clone();
dist_columns.push(DVector::from_vec(column_j));
sorted_column_j.sort_by(|a, b| {
a.partial_cmp(b).unwrap_or_else(|| {
panic!("Mass-weighted interatomic distances {a} and {b} cannot be compared.")
})
});
let sorted_column_j_vec = DVector::from_vec(sorted_column_j);
if j == 0 {
sorted_dist_columns.push(sorted_column_j_vec);
} else {
let equiv_set_search = equiv_indicess.iter().position(|equiv_indices| {
sorted_dist_columns[equiv_indices[0]].relative_eq(
&sorted_column_j_vec,
self.threshold,
self.threshold,
) && match (&all_atoms[j].kind, &all_atoms[equiv_indices[0]].kind) {
(AtomKind::Ordinary, AtomKind::Ordinary) => {
all_atoms[j].atomic_number == all_atoms[equiv_indices[0]].atomic_number
}
(AtomKind::Magnetic(_), AtomKind::Magnetic(_))
| (AtomKind::Electric(_), AtomKind::Electric(_)) => true,
_ => false,
}
});
sorted_dist_columns.push(sorted_column_j_vec);
if let Some(index) = equiv_set_search {
equiv_indicess[index].push(j);
} else {
equiv_indicess.push(vec![j]);
};
}
}
let dist_elements_f = dist_columns
.iter()
.flatten()
.cloned()
.collect::<Vec<_>>();
let n_atoms = all_atoms.len();
let dist_matrix =
Array2::<f64>::from_shape_vec((n_atoms, n_atoms).f(), dist_elements_f)
.expect("Unable to collect the interatomic distances into a square matrix.");
(dist_matrix, equiv_indicess)
}
/// Determines the sets of symmetry-equivalent atoms.
///
/// This *does* take into account fictitious special atoms.
///
/// # Returns
///
/// * Copies of the atoms in the molecule, grouped into symmetry-equivalent
/// groups.
///
/// # Panics
///
/// Panics when the any of the mass-weighted interatomic distances cannot be compared.
#[must_use]
pub fn calc_sea_groups(&self) -> Vec<Vec<Atom>> {
let all_atoms = &self.get_all_atoms();
let (_, equiv_indicess) = self.calc_interatomic_distance_matrix();
let sea_groups: Vec<Vec<Atom>> = equiv_indicess
.iter()
.map(|equiv_indices| {
equiv_indices
.iter()
.map(|index| all_atoms[*index].clone())
.collect()
})
.collect();
log::debug!("Number of SEA groups: {}", sea_groups.len());
sea_groups
}
/// Adds two fictitious magnetic atoms to represent the magnetic field.
///
/// # Arguments
///
/// * `magnetic_field` - The magnetic field vector. If zero or `None`, any magnetic
/// field present will be removed.
///
/// # Panics
///
/// Panics when the number of atoms cannot be represented as an `f64` value.
pub fn set_magnetic_field(&mut self, magnetic_field: Option<Vector3<f64>>) {
if let Some(b_vec) = magnetic_field {
if approx::relative_ne!(b_vec.norm(), 0.0) {
let com = self.calc_com();
let ave_mag = {
let average_distance = self
.atoms
.iter()
.fold(0.0, |acc, atom| acc + (atom.coordinates - com).magnitude())
/ self.atoms.len().to_f64().unwrap_or_else(|| {
panic!("Unable to convert `{}` to `f64`.", self.atoms.len())
});
if average_distance > 0.0 {
average_distance
} else {
0.5
}
};
let b_vec_norm = b_vec.normalize() * ave_mag * 0.5;
self.magnetic_atoms = Some(vec![
Atom::new_special(AtomKind::Magnetic(true), com + b_vec_norm, self.threshold)
.expect("Unable to construct a special magnetic atom."),
Atom::new_special(AtomKind::Magnetic(false), com - b_vec_norm, self.threshold)
.expect("Unable to construct a special magnetic atom."),
]);
} else {
self.magnetic_atoms = None;
}
} else {
self.magnetic_atoms = None;
}
}
/// Adds one fictitious electric atom to represent the electric field.
///
/// # Arguments
///
/// * `electric_field` - The electric field vector. If zero or `None`, any electric
/// field present will be removed.
///
/// # Panics
///
/// Panics when the number of atoms cannot be represented as an `f64` value.
pub fn set_electric_field(&mut self, electric_field: Option<Vector3<f64>>) {
if let Some(e_vec) = electric_field {
if approx::relative_ne!(e_vec.norm(), 0.0) {
let com = self.calc_com();
let ave_mag = {
let average_distance = self
.atoms
.iter()
.fold(0.0, |acc, atom| acc + (atom.coordinates - com).magnitude())
/ self.atoms.len().to_f64().unwrap_or_else(|| {
panic!("Unable to convert `{}` to `f64`.", self.atoms.len())
});
if average_distance > 0.0 {
average_distance
} else {
0.5
}
};
let e_vec_norm = e_vec.normalize() * ave_mag * 0.5;
self.electric_atoms = Some(vec![Atom::new_special(
AtomKind::Electric(true),
com + e_vec_norm,
self.threshold,
)
.expect("Unable to construct an electric special atom.")]);
} else {
self.electric_atoms = None;
}
} else {
self.electric_atoms = None;
}
}
/// Clones this molecule and adjusts all comparison thresholds to that specified by `thresh`.
///
/// # Arguments
///
/// * `thresh` - The new threshold to be assigned to the cloned molecule.
///
/// # Returns
///
/// A cloned copy of the molecule wit the adjusted threshold.
pub fn adjust_threshold(&self, thresh: f64) -> Self {
Self::from_atoms(
&self
.get_all_atoms()
.into_iter()
.cloned()
.collect::<Vec<_>>(),
thresh,
)
}
/// Reorientates the molecule in-place into a canonical alignment with the space-fixed axes of
/// the coordinate system.
///
/// Fictitious special atoms are also moved during the reorientation.
///
/// If the molecule has a unique principal axis, then this axis becomes aligned with the
/// $`z`$-axis and the other two degenerate axes become aligned with the $`x`$- and $`y`$-axes
/// of the coordinate system. If the molecule has no unique principal axes, then the axes are
/// aligned with $`x`$-, $`y`$-, and $`z`$-axes in ascending order of moments of inertia.
///
/// # Arguments
///
/// * `moi_thresh` - Threshold for comparing moments of inertia.
pub fn reorientate_mut(&mut self, moi_thresh: f64) {
let (moi, principal_axes) = self.calc_moi();
let rotmat = if approx::relative_ne!(
moi[0],
moi[1],
max_relative = moi_thresh,
epsilon = moi_thresh
) && approx::relative_eq!(
moi[1],
moi[2],
max_relative = moi_thresh,
epsilon = moi_thresh
) {
// principal_axes[0] is unique.
Matrix3::from_columns(&[principal_axes[1], principal_axes[2], principal_axes[0]])
.transpose()
} else {
// principal_axes[2] is unique, or no unique axis, or isotropic.
Matrix3::from_columns(&[principal_axes[0], principal_axes[1], principal_axes[2]])
.transpose()
};
let com = self.calc_com();
self.recentre_mut();
self.transform_mut(&rotmat);
self.translate_mut(&(com - Point3::origin()));
}
/// Clones and reorientates the molecule into a canonical alignment with the space-fixed axes
/// of the coordinate system.
///
/// Fictitious special atoms are also moved during the reorientation.
///
/// If the molecule has a unique principal axis, then this axis becomes aligned with the
/// $`z`$-axis and the other two degenerate axes become aligned with the $`x`$- and $`y`$-axes
/// of the coordinate system. If the molecule has no unique principal axes, then the axes are
/// aligned with $`x`$-, $`y`$-, and $`z`$-axes in ascending order of moments of inertia.
///
/// # Arguments
///
/// * `moi_thresh` - Threshold for comparing moments of inertia.
///
/// # Returns
///
/// A reoriented copy of the molecule.
pub fn reorientate(&self, moi_thresh: f64) -> Self {
let mut reoriented_mol = self.clone();
reoriented_mol.reorientate_mut(moi_thresh);
reoriented_mol
}
}
// =====================
// Trait implementations
// =====================
impl fmt::Display for Molecule {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "Molecule consisting of")?;
for atom in self.get_all_atoms().iter() {
writeln!(f, " {atom}")?;
}
Ok(())
}
}
impl Transform for Molecule {
fn transform_mut(&mut self, mat: &Matrix3<f64>) {
for atom in &mut self.atoms {
atom.transform_mut(mat);
}
if let Some(ref mut mag_atoms) = self.magnetic_atoms {
for atom in mag_atoms.iter_mut() {
atom.transform_mut(mat);
}
}
if let Some(ref mut ele_atoms) = self.electric_atoms {
for atom in ele_atoms.iter_mut() {
atom.transform_mut(mat);
}
}
}
fn rotate_mut(&mut self, angle: f64, axis: &Vector3<f64>) {
for atom in &mut self.atoms {
atom.rotate_mut(angle, axis);
}
if let Some(ref mut mag_atoms) = self.magnetic_atoms {
for atom in mag_atoms.iter_mut() {
atom.rotate_mut(angle, axis);
}
}
if let Some(ref mut ele_atoms) = self.electric_atoms {
for atom in ele_atoms.iter_mut() {
atom.rotate_mut(angle, axis);
}
}
}
fn improper_rotate_mut(
&mut self,
angle: f64,
axis: &Vector3<f64>,
kind: &ImproperRotationKind,
) {
for atom in &mut self.atoms {
atom.improper_rotate_mut(angle, axis, kind);
}
if let Some(ref mut mag_atoms) = self.magnetic_atoms {
for atom in mag_atoms.iter_mut() {
atom.improper_rotate_mut(angle, axis, kind);
}
}
if let Some(ref mut ele_atoms) = self.electric_atoms {
for atom in ele_atoms.iter_mut() {
atom.improper_rotate_mut(angle, axis, kind);
}
}
}
fn translate_mut(&mut self, tvec: &Vector3<f64>) {
for atom in &mut self.atoms {
atom.translate_mut(tvec);
}
if let Some(ref mut mag_atoms) = self.magnetic_atoms {
for atom in mag_atoms.iter_mut() {
atom.translate_mut(tvec);
}
}
if let Some(ref mut ele_atoms) = self.electric_atoms {
for atom in ele_atoms.iter_mut() {
atom.translate_mut(tvec);
}
}
}
fn recentre_mut(&mut self) {
let com = self.calc_com();
let tvec = -Vector3::new(com[0], com[1], com[2]);
self.translate_mut(&tvec);
}
fn reverse_time_mut(&mut self) {
if let Some(ref mut mag_atoms) = self.magnetic_atoms {
for atom in mag_atoms.iter_mut() {
atom.reverse_time_mut();
}
}
}
fn transform(&self, mat: &Matrix3<f64>) -> Self {
let mut transformed_mol = self.clone();
transformed_mol.transform_mut(mat);
transformed_mol
}
fn rotate(&self, angle: f64, axis: &Vector3<f64>) -> Self {
let mut rotated_mol = self.clone();
rotated_mol.rotate_mut(angle, axis);
rotated_mol
}
fn improper_rotate(
&self,
angle: f64,
axis: &Vector3<f64>,
kind: &ImproperRotationKind,
) -> Self {
let mut improper_rotated_mol = self.clone();
improper_rotated_mol.improper_rotate_mut(angle, axis, kind);
improper_rotated_mol
}
fn translate(&self, tvec: &Vector3<f64>) -> Self {
let mut translated_mol = self.clone();
translated_mol.translate_mut(tvec);
translated_mol
}
fn recentre(&self) -> Self {
let mut recentred_mol = self.clone();
recentred_mol.recentre_mut();
recentred_mol
}
fn reverse_time(&self) -> Self {
let mut time_reversed_mol = self.clone();
time_reversed_mol.reverse_time_mut();
time_reversed_mol
}
}
impl PartialEq for Molecule {
fn eq(&self, other: &Self) -> bool {
if self.atoms.len() != other.atoms.len() {
return false;
};
let thresh = self
.atoms
.iter()
.chain(other.atoms.iter())
.fold(0.0_f64, |acc, atom| acc.max(atom.threshold));
let mut other_atoms_ref: HashSet<_> = other.atoms.iter().collect();
for s_atom in &self.atoms {
let o_atom = other
.atoms
.iter()
.find(|o_atm| (s_atom.coordinates - o_atm.coordinates).norm() < thresh);
match o_atom {
Some(atm) => {
other_atoms_ref.remove(atm);
}
None => {
break;
}
}
}
if !other_atoms_ref.is_empty() {
return false;
}
if let Some(self_mag_atoms) = &self.magnetic_atoms {
if let Some(other_mag_atoms) = &other.magnetic_atoms {
let mut other_mag_atoms_ref: HashSet<_> = other_mag_atoms.iter().collect();
for s_atom in self_mag_atoms.iter() {
let o_atom = other_mag_atoms.iter().find(|o_atm| {
(s_atom.coordinates - o_atm.coordinates).norm() < thresh
&& s_atom.kind == o_atm.kind
});
match o_atom {
Some(atm) => {
other_mag_atoms_ref.remove(atm);
}
None => {
break;
}
}
}
if !other_mag_atoms_ref.is_empty() {
return false;
}
} else {
return false;
}
} else if other.magnetic_atoms.is_some() {
return false;
};
if let Some(self_ele_atoms) = &self.electric_atoms {
if let Some(other_ele_atoms) = &other.electric_atoms {
let mut other_ele_atoms_ref: HashSet<_> = other_ele_atoms.iter().collect();
for s_atom in self_ele_atoms.iter() {
let o_atom = other_ele_atoms.iter().find(|o_atm| {
(s_atom.coordinates - o_atm.coordinates).norm() < thresh
&& s_atom.kind == o_atm.kind
});
match o_atom {
Some(atm) => {
other_ele_atoms_ref.remove(atm);
}
None => {
break;
}
}
}
if !other_ele_atoms_ref.is_empty() {
return false;
}
} else {
return false;
}
} else if other.electric_atoms.is_some() {
return false;
};
true
}
}
impl PermutableCollection for Molecule {
type Rank = usize;
/// Determines the permutation of *all* atoms to map `self` to `other`. Special fictitious
/// atoms are included after ordinary atoms, with magnetic atoms before electric atoms.
///
/// # Arguments
///
/// * `other` - Another molecule to be compared with `self`.
///
/// # Returns
///
/// Returns a permutation that permutes *all* atoms of `self` to give `other`, or `None` if no
/// such permutation exists.
fn get_perm_of(&self, other: &Self) -> Option<Permutation<Self::Rank>> {
let self_recentred = self.recentre();
let other_recentred = other.recentre();
let o_atoms: HashMap<Atom, usize> = other_recentred
.atoms
.into_iter()
.chain(
other_recentred
.magnetic_atoms
.unwrap_or_default()
.into_iter(),
)
.chain(
other_recentred
.electric_atoms
.unwrap_or_default()
.into_iter(),
)
.enumerate()
.map(|(i, atom)| (atom, i))
.collect();
let image_opt: Option<Vec<Self::Rank>> = self_recentred
.atoms
.iter()
.chain(self_recentred.magnetic_atoms.unwrap_or_default().iter())
.chain(self_recentred.electric_atoms.unwrap_or_default().iter())
.map(|s_atom| {
o_atoms
.get(s_atom)
.or_else(|| {
let thresh = s_atom.threshold;
log::debug!("Unable to retrieve matching original atom by hash. Falling back on distance comparisons with threshold {thresh:.3e}...");
o_atoms.iter().find_map(|(o_atom, o_atom_idx)| {
if s_atom.atomic_number == o_atom.atomic_number
&& s_atom.kind == o_atom.kind
&& (s_atom.coordinates - o_atom.coordinates).norm() < thresh
{
Some(o_atom_idx)
} else {
None
}
})
})
.copied()
})
.collect();
image_opt.and_then(|image| Permutation::from_image(image).ok())
}
/// Permutes *all* atoms in this molecule (including special fictitious atoms) and places them
/// in a new molecule to be returned.
///
/// # Arguments
///
/// * `perm` - A permutation for the atoms. Special fictitious atoms are included after
/// ordinary atoms, with magnetic atoms before electric atoms.
///
/// # Returns
///
/// A new molecule with the permuted atoms.
///
/// # Panics
///
/// Panics if the rank of `perm` does not match the number of atoms in this molecule, or if the
/// permutation results in atoms of different kind (*e.g.* ordinary and magnetic) are permuted
/// into each other.
fn permute(&self, perm: &Permutation<Self::Rank>) -> Result<Self, anyhow::Error> {
let mut p_mol = self.clone();
p_mol.permute_mut(perm)?;
Ok(p_mol)
}
/// Permutes in-place *all* atoms in this molecule (including special fictitious atoms).
///
/// The in-place rearrangement implementation is taken from
/// [here](https://stackoverflow.com/a/69774341/5112668).
///
/// # Arguments
///
/// * `perm` - A permutation for the atoms. Special fictitious atoms are included after
/// ordinary atoms, with magnetic atoms before electric atoms.
///
/// # Panics
///
/// Panics if the rank of `perm` does not match the number of atoms in this molecule, or if the
/// permutation results in atoms of different kind (*e.g.* ordinary and magnetic) are permuted
/// into each other.
fn permute_mut(&mut self, perm: &Permutation<Self::Rank>) -> Result<(), anyhow::Error> {
let n_ordinary = self.atoms.len();
let perm_ordinary = Permutation::from_image(perm.image()[0..n_ordinary].to_vec())?;
permute_inplace(&mut self.atoms, &perm_ordinary);
let n_last = if let Some(mag_atoms) = self.magnetic_atoms.as_mut() {
let n_magnetic = mag_atoms.len();
let perm_magnetic = Permutation::from_image(
perm.image()[n_ordinary..(n_ordinary + n_magnetic)]
.iter()
.map(|x| x - n_ordinary)
.collect::<Vec<_>>(),
)?;
permute_inplace(mag_atoms, &perm_magnetic);
n_ordinary + n_magnetic
} else {
n_ordinary
};
if let Some(elec_atoms) = self.electric_atoms.as_mut() {
let n_electric = elec_atoms.len();
let perm_electric = Permutation::from_image(
perm.image()[n_last..(n_last + n_electric)]
.iter()
.map(|x| x - n_last)
.collect::<Vec<_>>(),
)?;
permute_inplace(elec_atoms, &perm_electric);
}
Ok(())
}
}