1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
//! Items to assist with integral evaluations on atomic-orbital basis functions.
use std::collections::HashMap;
use std::ops::Index;
use anyhow::{self, format_err};
use derive_builder::Builder;
use nalgebra::{Point3, Vector3};
use rayon::prelude::*;
use reqwest;
use serde::{Deserialize, Serialize};
use crate::auxiliary::atom::{ElementMap, ANGSTROM_TO_BOHR};
use crate::auxiliary::molecule::Molecule;
use crate::basis::ao::{BasisShell, CartOrder, PureOrder, ShellOrder};
#[cfg(test)]
#[path = "ao_integrals_tests.rs"]
mod ao_integrals_tests;
// -------------------
// GaussianContraction
// -------------------
/// Structure to handle primitives in a Gaussian contraction.
#[derive(Clone, Builder, Debug)]
pub struct GaussianContraction<E, C> {
/// Constituent primitives in the contraction. Each primitive has the form
/// $`c\exp\left[-\alpha\lvert \mathbf{r} - \mathbf{R} \rvert^2\right]`$ is characterised by a
/// tuple of its exponent $`\alpha`$ and coefficient $`c`$, respectively.
pub(crate) primitives: Vec<(E, C)>,
}
impl<E, C> GaussianContraction<E, C> {
/// The number of primitive Gaussians in this contraction.
pub(crate) fn contraction_length(&self) -> usize {
self.primitives.len()
}
}
// ---------------------
// BasisShellContraction
// ---------------------
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Deserialisable structs for BSE data retrieval
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Base API address of Basis Set Exchange.
const BSE_BASE_API: &str = "https://www.basissetexchange.org/api";
/// Threshold for filtering out primitives in a basis function contraction.
const CONTRACTION_COEFF_THRESH: f64 = 1e-16;
/// Structure to represent the REST API result fro, BasisSetExchange.
#[derive(Serialize, Deserialize, Debug)]
struct BSEResponse {
/// Name of the basis set.
name: String,
/// Version of the basis set.
version: String,
/// A hashmap between atomic numbers and element basis information.
elements: HashMap<u32, BSEElement>,
}
/// Structure to handle basis set information for an element.
#[derive(Serialize, Deserialize, Debug)]
struct BSEElement {
/// A vector of basis set information for the shells in this element.
electron_shells: Vec<BSEElectronShell>,
}
/// Structure to handle basis set information for a shell.
#[derive(Serialize, Deserialize, Debug)]
#[serde(try_from = "BSEElectronShellRaw")]
struct BSEElectronShell {
/// The type of basis functions in this shell.
function_type: String,
/// The chemical region described by this shell.
region: String,
/// the angular momentum of this shell.
angular_momentum: Vec<u32>,
/// A vector of primitive exponents.
exponents: Vec<f64>,
/// A vector of vectors of primitive coefficients. Each inner vector is to be interpreted as a
/// separate shell with the same primitive exponents and angular momentum, but different
/// contraction coefficients.
coefficients: Vec<Vec<f64>>,
}
/// Structure to handle basis set information for a shell, as obtained raw from BasisSetExchange.
#[derive(Deserialize)]
struct BSEElectronShellRaw {
/// The type of basis functions in this shell.
function_type: String,
/// The chemical region described by this shell.
region: String,
/// the angular momentum of this shell.
angular_momentum: Vec<u32>,
/// A vector of primitive exponents.
exponents: Vec<String>,
/// A vector of vectors of primitive coefficients. Each inner vector is to be interpreted as a
/// separate shell with the same primitive exponents and angular momentum, but different
/// contraction coefficients.
coefficients: Vec<Vec<String>>,
}
impl TryFrom<BSEElectronShellRaw> for BSEElectronShell {
type Error = std::num::ParseFloatError;
fn try_from(other: BSEElectronShellRaw) -> Result<Self, Self::Error> {
let converted = Self {
function_type: other.function_type,
region: other.region,
angular_momentum: other.angular_momentum,
exponents: other
.exponents
.iter()
.map(|s| s.parse::<f64>())
.collect::<Result<Vec<_>, _>>()?,
coefficients: other
.coefficients
.iter()
.map(|d| {
d.iter()
.map(|s| s.parse::<f64>())
.collect::<Result<Vec<_>, _>>()
})
.collect::<Result<Vec<_>, _>>()?,
};
Ok(converted)
}
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// BasisShellContraction definition
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/// Structure to handle all shell information for integrals.
#[derive(Clone, Builder, Debug)]
pub struct BasisShellContraction<E, C> {
/// Basis function ordering information.
pub(crate) basis_shell: BasisShell,
/// The Gaussian primitives in the contraction of this shell.
pub(crate) contraction: GaussianContraction<E, C>,
/// The Cartesian origin $`\mathbf{R}`$ of this shell.
pub(crate) cart_origin: Point3<f64>,
/// The optional plane-wave $`\mathbf{k}`$ vector in the exponent
/// $`\exp\left[i\mathbf{k}\cdot(\mathbf{r} - \mathbf{R})\right]`$ associated with this shell.
/// If this is `None`, then this exponent is set to unity.
#[builder(default = "None")]
pub(crate) k: Option<Vector3<f64>>,
}
impl<E, C> BasisShellContraction<E, C> {
/// The basis function ordering information of this shell.
pub(crate) fn basis_shell(&self) -> &BasisShell {
&self.basis_shell
}
/// The plane-wave $`\mathbf{k}`$ vector in the exponent.
pub(crate) fn k(&self) -> Option<&Vector3<f64>> {
self.k.as_ref()
}
/// The Cartesian origin $`\mathbf{R}`$ of this shell.
pub(crate) fn cart_origin(&self) -> &Point3<f64> {
&self.cart_origin
}
/// The number of primitive Gaussians in this shell.
pub(crate) fn contraction_length(&self) -> usize {
self.contraction.contraction_length()
}
/// Applies a uniform magnetic field to the shell and sets its plane-wave $`k`$ vector
/// according to
///
/// ```math
/// \mathbf{k} = \frac{1}{2} \mathbf{B} \times (\mathbf{R} - \mathbf{G}),
/// ```
///
/// where $`\mathbf{B}`$ is the uniform magnetic field vector, $`\mathbf{R}`$ is the Cartesian
/// origin of this shell, and $`\mathbf{G}`$ the gauge origin with respect to which the
/// magnetic field is defined. Both $`\mathbf{R}`$ and $`\mathbf{G}`$ are points in a
/// space-fixed coordinate system.
///
/// # Arguments
///
/// * `b` - The magnetic field vector $`\mathbf{B}`$.
/// * `g` - The gauge origin $`\mathbf{G}`$.
pub(crate) fn apply_magnetic_field(&mut self, b: &Vector3<f64>, g: &Point3<f64>) -> &mut Self {
let k = 0.5 * b.cross(&(self.cart_origin.coords - g.coords));
self.k = Some(k);
self
}
}
impl BasisShellContraction<f64, f64> {
/// Computes the self-overlap ($`\mathcal{l}_2`$-norm) of this shell and divides in-place the
/// contraction coefficients by ther square root of this, so that the functions in the shell
/// are always normalised.
pub(crate) fn renormalise(&mut self) -> &mut Self {
let c_self = self.clone();
let st = crate::integrals::shell_tuple::build_shell_tuple![
(&c_self, true), (&c_self, false); f64
];
let ovs = st.overlap([0, 0]);
let norm = ovs[0].iter().next().unwrap();
let scale = 1.0 / norm.sqrt();
self.contraction.primitives.iter_mut().for_each(|(_, d)| {
*d *= scale;
});
self
}
/// Retrieves basis information from BasisSetExchange and constructs a vector of vectors of
/// [`Self`] for a specified molecule. Each inner vector is for one atom in the molecule.
///
/// This method produces basis name and function ordering that are uniform across all atoms and
/// shells. The result from this method can be mutated for finer control of this.
///
/// # Arguments
///
/// * `mol` - A molecule.
/// * `basis_name` - The name of the basis set to be retrieved.
/// * `cart` - A boolean indicating if the shell functions should have lexicographic Cartesian
/// ordering. If `false`, the shell functions shall have increasing-$`m`$ pure ordering
/// instead.
/// * `optimised_contraction` - A boolean indicating if the optimised contraction version of
/// shells should be requested.
/// * `version` - The requested version of the basis set information.
/// * `mol_bohr` - A boolean indicating of the coordinates of the atoms in `mol` are to be
/// interpreted in units of Bohr. If `false`, they are assumed to be in units of Ångström and
/// will be converted to Bohr.
/// * `force_renormalisation` - A boolean indicating if each shell is renormalised by scaling
/// its primitive contraction coefficients by the inverse square root of its
/// $\mathcal{l}_2$-norm.
///
/// # Returns
///
/// A vector of vectors of [`Self`].
pub(crate) fn from_bse(
mol: &Molecule,
basis_name: &str,
cart: bool,
optimised_contraction: bool,
version: usize,
mol_bohr: bool,
force_renormalisation: bool,
) -> Result<Vec<Vec<Self>>, anyhow::Error> {
let emap = ElementMap::new();
let bscs = mol
.atoms
.par_iter()
.map(|atom| {
let element = &atom.atomic_symbol;
let api_url = format!(
"{BSE_BASE_API}/basis/\
{basis_name}/format/json/\
?elements={element}\
&optimize_general={optimised_contraction}\
&version={version}"
);
let rjson: BSEResponse = reqwest::blocking::get(&api_url)?.json()?;
let atomic_number = emap
.get(element)
.ok_or(format_err!("Element {element} not found."))?
.0;
rjson
.elements
.get(&atomic_number)
.ok_or(format_err!(
"Basis information for element {element} not found."
))
.map(|element| {
element
.electron_shells
.iter()
.flat_map(|shell| {
shell
.angular_momentum
.iter()
.cycle()
.zip(shell.coefficients.iter())
.map(|(&l, d)| {
let shell_order = if cart {
ShellOrder::Cart(CartOrder::lex(l))
} else {
ShellOrder::Pure(PureOrder::increasingm(l))
};
let basis_shell = BasisShell::new(l, shell_order);
let contraction = GaussianContraction::<f64, f64> {
primitives: shell
.exponents
.iter()
.copied()
.zip(d.iter().copied())
.filter(|(_, d)| d.abs() > CONTRACTION_COEFF_THRESH)
.collect::<Vec<(f64, f64)>>(),
};
let cart_origin = if mol_bohr {
atom.coordinates.clone()
} else {
atom.coordinates.clone() * ANGSTROM_TO_BOHR
};
if force_renormalisation {
let mut bsc = BasisShellContraction {
basis_shell,
contraction,
cart_origin,
k: None,
};
bsc.renormalise();
bsc
} else {
BasisShellContraction {
basis_shell,
contraction,
cart_origin,
k: None,
}
}
})
})
.collect::<Vec<_>>()
})
})
.collect::<Result<Vec<_>, _>>()?;
Ok(bscs)
}
}
// --------
// BasisSet
// --------
/// Structure to manage basis information for a molecule.
#[derive(Clone, Debug)]
pub struct BasisSet<E, C> {
/// A vector of vectors containing basis information for the atoms in this molecule. Each inner
/// vector is for one atom.
basis_atoms: Vec<Vec<BasisShellContraction<E, C>>>,
/// The function boundaries for the atoms in the molecule.
atom_boundaries: Vec<(usize, usize)>,
/// The function boundaries for the shells in the molecule.
shell_boundaries: Vec<(usize, usize)>,
}
impl<E, C> BasisSet<E, C> {
/// Creates a new [`BasisSet`] structure from a vector of vectors of basis shells.
///
/// # Arguments
///
/// * `batms` - A vector of vectors of basis shells. Each inner vector is for one atom.
///
/// # Returns
///
/// A new [`BasisSet`] structure.
pub(crate) fn new(batms: Vec<Vec<BasisShellContraction<E, C>>>) -> Self {
let atom_boundaries = batms
.iter()
.scan(0, |acc, batm| {
let atom_length = batm
.iter()
.map(|bs| bs.basis_shell.n_funcs())
.sum::<usize>();
let boundary = (*acc, *acc + atom_length);
*acc += atom_length;
Some(boundary)
})
.collect::<Vec<_>>();
let shell_boundaries = batms
.iter()
.flatten()
.scan(0, |acc, bsc| {
let shell_length = bsc.basis_shell.n_funcs();
let boundary = (*acc, *acc + shell_length);
*acc += shell_length;
Some(boundary)
})
.collect::<Vec<_>>();
Self {
basis_atoms: batms,
atom_boundaries,
shell_boundaries,
}
}
/// Updates the cached shell boundaries. This is required when the shells or atoms have been
/// reordered.
fn update_shell_boundaries(&mut self) -> &mut Self {
self.shell_boundaries = self
.basis_atoms
.iter()
.flatten()
.scan(0, |acc, bsc| {
let shell_length = bsc.basis_shell.n_funcs();
let boundary = (*acc, *acc + shell_length);
*acc += shell_length;
Some(boundary)
})
.collect::<Vec<_>>();
self
}
/// Applies a uniform magnetic field to all shells and sets their plane-wave $`k`$ vectors.
/// See the documentation of [`BasisShellContraction::apply_magnetic_field`] for more
/// information.
///
/// # Arguments
///
/// * `b` - The magnetic field vector $`\mathbf{B}`$.
/// * `g` - The gauge origin $`\mathbf{G}`$.
pub(crate) fn apply_magnetic_field(&mut self, b: &Vector3<f64>, g: &Point3<f64>) -> &mut Self {
self.all_shells_mut().for_each(|shell| {
shell.apply_magnetic_field(b, g);
});
self
}
/// The number of shells in the basis set.
pub(crate) fn n_shells(&self) -> usize {
self.basis_atoms
.iter()
.map(|batm| batm.len())
.sum::<usize>()
}
/// The number of basis functions in the basis set.
pub(crate) fn n_funcs(&self) -> usize {
self.all_shells().map(|shell| shell.basis_shell.n_funcs()).sum::<usize>()
}
/// Sorts the shells in each atom by their angular momenta.
pub(crate) fn sort_by_angular_momentum(&mut self) -> &mut Self {
self.basis_atoms
.iter_mut()
.for_each(|batm| batm.sort_by_key(|bsc| bsc.basis_shell.l));
self.update_shell_boundaries()
}
/// Returns the function shell boundaries.
pub(crate) fn shell_boundaries(&self) -> &Vec<(usize, usize)> {
&self.shell_boundaries
}
/// Returns an iterator over all shells in the basis set.
pub(crate) fn all_shells(&self) -> impl Iterator<Item = &BasisShellContraction<E, C>> {
self.basis_atoms.iter().flatten()
}
/// Returns a mutable iterator over all shells in the basis set.
pub(crate) fn all_shells_mut(
&mut self,
) -> impl Iterator<Item = &mut BasisShellContraction<E, C>> {
self.basis_atoms.iter_mut().flatten()
}
}
impl BasisSet<f64, f64> {
/// Retrieves basis information from BasisSetExchange and constructs [`Self`] for a specified
/// molecule.
///
/// This method produces basis name and function ordering that are uniform across all atoms and
/// shells. The result from this method can be mutated for finer control of this.
///
/// # Arguments
///
/// * `mol` - A molecule.
/// * `basis_name` - The name of the basis set to be retrieved.
/// * `cart` - A boolean indicating if the shell functions should have lexicographic Cartesian
/// ordering. If `false`, the shell functions shall have increasing-$`m`$ pure ordering
/// instead.
/// * `optimised_contraction` - A boolean indicating if the optimised contraction version of
/// shells should be requested.
/// * `version` - The requested version of the basis set information.
/// * `mol_bohr` - A boolean indicating of the coordinates of the atoms in `mol` are to be
/// interpreted in units of Bohr. If `false`, they are assumed to be in units of Ångström and
/// will be converted to Bohr.
/// * `force_renormalisation` - A boolean indicating if each shell is renormalised by scaling
/// its primitive contraction coefficients by the inverse square root of its
/// $\mathcal{l}_2$-norm.
///
/// # Returns
///
/// A [`BasisSet`] structure.
pub(crate) fn from_bse(
mol: &Molecule,
basis_name: &str,
cart: bool,
optimised_contraction: bool,
version: usize,
mol_bohr: bool,
force_renormalisation: bool,
) -> Result<Self, anyhow::Error> {
Ok(Self::new(BasisShellContraction::<f64, f64>::from_bse(
mol,
basis_name,
cart,
optimised_contraction,
version,
mol_bohr,
force_renormalisation,
)?))
}
}
impl<E, C> Index<usize> for BasisSet<E, C> {
type Output = BasisShellContraction<E, C>;
fn index(&self, i: usize) -> &Self::Output {
self.basis_atoms
.iter()
.flatten()
.nth(i)
.unwrap_or_else(|| panic!("Unable to obtain the basis shell with index {i}."))
}
}