1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
//! Python bindings for QSym² atomic-orbital integral evaluations.
use anyhow::{self, bail, ensure, format_err};
use lazy_static::lazy_static;
#[cfg(feature = "integrals")]
use nalgebra::{Point3, Vector3};
#[cfg(feature = "integrals")]
use num_complex::Complex;
#[cfg(feature = "integrals")]
use numpy::{IntoPyArray, PyArray2, PyArray4};
use periodic_table;
#[cfg(feature = "integrals")]
use pyo3::exceptions::PyValueError;
use pyo3::prelude::*;
use pyo3::types::PyType;
#[cfg(feature = "qchem")]
use regex::Regex;
use crate::angmom::spinor_rotation_3d::SpinConstraint;
use crate::angmom::{ANGMOM_INDICES, ANGMOM_LABELS};
use crate::auxiliary::molecule::Molecule;
use crate::basis::ao::{
BasisAngularOrder, BasisAtom, BasisShell, CartOrder, PureOrder, ShellOrder,
};
#[cfg(feature = "integrals")]
use crate::basis::ao_integrals::{BasisSet, BasisShellContraction, GaussianContraction};
#[cfg(feature = "integrals")]
use crate::integrals::shell_tuple::build_shell_tuple_collection;
#[cfg(feature = "qchem")]
use crate::io::format::{log_title, qsym2_output, QSym2Output};
#[cfg(feature = "qchem")]
lazy_static! {
static ref SP_PATH_RE: Regex =
Regex::new(r"(.*sp)\\energy_function$").expect("Regex pattern invalid.");
}
/// Python-exposed enumerated type to handle the union type `bool | list[int]` in Python.
#[derive(Clone, FromPyObject)]
pub enum PyPureOrder {
/// Variant for standard pure shell order. The associated boolean indicates if the functions
/// are arranged in increasing-$`m`$ order.
Standard(bool),
/// Variant for custom pure shell order. The associated vector contains a sequence of integers
/// specifying the order of $`m`$ values in the shell.
Custom(Vec<i32>),
}
/// Python-exposed enumerated type to handle the `ShellOrder` union type `bool |
/// Optional[list[tuple[int, int, int]]]` in Python.
#[derive(Clone, FromPyObject)]
pub enum PyShellOrder {
/// Variant for pure shell order. The associated value is either a boolean indicating if the
/// functions are arranged in increasing-$`m`$ order, or a sequence of integers specifying a
/// custom $`m`$-order.
///
/// Python type: `bool | list[int]`.
PureOrder(PyPureOrder),
/// Variant for Cartesian shell order. If the associated `Option` is `None`, the order will be
/// taken to be lexicographic. Otherwise, the order will be as specified by the $`(x, y, z)`$
/// exponent tuples.
///
/// Python type: Optional[list[tuple[int, int, int]]].
CartOrder(Option<Vec<(u32, u32, u32)>>),
}
/// Python-exposed structure to marshal basis angular order information between Python and Rust.
///
/// # Constructor arguments
///
/// * `basis_atoms` - A vector of tuples, each of which provides information for one basis
/// atom in the form `(element, basis_shells)`. Here:
/// * `element` is a string giving the element symbol of the atom, and
/// * `basis_shells` is a vector of tuples, each of which provides information for one basis
/// shell on the atom in the form `(angmom, cart, order)`. Here:
/// * `angmom` is a symbol such as `"S"` or `"P"` for the angular momentum of the shell,
/// * `cart` is a boolean indicating if the functions in the shell are Cartesian (`true`)
/// or pure / solid harmonics (`false`), and
/// * `order` specifies how the functions in the shell are ordered:
/// * if `cart` is `true`, `order` can be `None` for lexicographic order, or a list of
/// tuples `(lx, ly, lz)` specifying a custom order for the Cartesian functions where
/// `lx`, `ly`, and `lz` are the $`x`$-, $`y`$-, and $`z`$-exponents, respectively;
/// * if `cart` is `false`, `order` can be `true` for increasing-$`m`$ order, `false` for
/// decreasing-$`m`$ order, or a list of $`m`$ values for custom order.
///
/// Python type:
/// `list[tuple[str, list[tuple[str, bool, Optional[list[tuple[int, int, int]]] | bool | list[int]]]]]`.
#[pyclass]
pub struct PyBasisAngularOrder {
/// A vector of basis atoms. Each item in the vector is a tuple consisting of an atomic symbol
/// and a vector of basis shell quartets whose components give:
/// - the angular momentum symbol for the shell,
/// - `true` if the shell is Cartesian, `false` if the shell is pure,
/// - if the shell is Cartesian, then this has two possibilities:
/// - either `None` if the Cartesian functions are in lexicographic order,
/// - or `Some(vec![[lx, ly, lz], ...])` to specify a custom Cartesian order.
/// - if the shell is pure, then this is a boolean `increasingm` to indicate if the pure
/// functions in the shell are arranged in increasing-$`m`$ order, or a list of $`m`$ values
/// specifying a custom $`m`$ order.
///
/// Python type: `list[tuple[str, list[tuple[str, bool, Optional[list[tuple[int, int, int]]] | bool | list[int]]]]]`.
basis_atoms: Vec<(String, Vec<(String, bool, PyShellOrder)>)>,
}
#[pymethods]
impl PyBasisAngularOrder {
/// Constructs a new `PyBasisAngularOrder` structure.
///
/// # Arguments
///
/// * `basis_atoms` - A vector of tuples, each of which provides information for one basis
/// atom in the form `(element, basis_shells)`. Here:
/// * `element` is a string giving the element symbol of the atom, and
/// * `basis_shells` is a vector of tuples, each of which provides information for one basis
/// shell on the atom in the form `(angmom, cart, order)`. Here:
/// * `angmom` is a symbol such as `"S"` or `"P"` for the angular momentum of the shell,
/// * `cart` is a boolean indicating if the functions in the shell are Cartesian (`true`)
/// or pure / solid harmonics (`false`), and
/// * `order` specifies how the functions in the shell are ordered:
/// * if `cart` is `true`, `order` can be `None` for lexicographic order, or a list of
/// tuples `(lx, ly, lz)` specifying a custom order for the Cartesian functions where
/// `lx`, `ly`, and `lz` are the $`x`$-, $`y`$-, and $`z`$-exponents, respectively;
/// * if `cart` is `false`, `order` can be `true` for increasing-$`m`$ order, `false` for
/// decreasing-$`m`$ order, or a list of $`m`$ values for custom order.
///
/// Python type:
/// `list[tuple[str, list[tuple[str, bool, bool | Optional[list[tuple[int, int, int]]]]]]]`.
#[new]
fn new(basis_atoms: Vec<(String, Vec<(String, bool, PyShellOrder)>)>) -> Self {
Self { basis_atoms }
}
/// Extracts basis angular order information from a Q-Chem HDF5 archive file.
///
/// # Arguments
///
/// * `filename` - A path to a Q-Chem HDF5 archive file. Python type: `str`.
///
/// # Returns
///
/// A sequence of `PyBasisAngularOrder` objects, one for each Q-Chem calculation found in the
/// HDF5 archive file. Python type: `list[PyBasisAngularOrder]`.
///
/// A summary showing how the `PyBasisAngularOrder` objects map onto the Q-Chem calculations in
/// the HDF5 archive file is also logged at the `INFO` level.
#[cfg(feature = "qchem")]
#[classmethod]
fn from_qchem_archive(_cls: &Bound<'_, PyType>, filename: &str) -> PyResult<Vec<Self>> {
use hdf5;
use indexmap::IndexMap;
use num::ToPrimitive;
let f = hdf5::File::open(filename).map_err(|err| PyValueError::new_err(err.to_string()))?;
let mut sp_paths = f
.group(".counters")
.map_err(|err| PyValueError::new_err(err.to_string()))?
.member_names()
.map_err(|err| PyValueError::new_err(err.to_string()))?
.iter()
.filter_map(|path| {
if SP_PATH_RE.is_match(path) {
let path = path.replace("\\", "/");
Some(path.replace("/energy_function", ""))
} else {
None
}
})
.collect::<Vec<_>>();
sp_paths.sort_by(|path_a, path_b| numeric_sort::cmp(path_a, path_b));
let elements = periodic_table::periodic_table();
log_title(&format!(
"Basis angular order extraction from Q-Chem HDF5 archive files",
));
let pybaos = sp_paths
.iter()
.map(|sp_path| {
let sp_group = f
.group(sp_path)
.map_err(|err| PyValueError::new_err(err.to_string()))?;
let shell_types = sp_group
.dataset("aobasis/shell_types")
.map_err(|err| PyValueError::new_err(err.to_string()))?
.read_1d::<i32>()
.map_err(|err| PyValueError::new_err(err.to_string()))?;
let shell_to_atom_map = sp_group
.dataset("aobasis/shell_to_atom_map")
.map_err(|err| PyValueError::new_err(err.to_string()))?
.read_1d::<usize>()
.map_err(|err| PyValueError::new_err(err.to_string()))?
.iter()
.zip(shell_types.iter())
.flat_map(|(&idx, shell_type)| {
if *shell_type == -1 {
vec![idx, idx]
} else {
vec![idx]
}
})
.collect::<Vec<_>>();
let nuclei = sp_group
.dataset("structure/nuclei")
.map_err(|err| PyValueError::new_err(err.to_string()))?
.read_1d::<usize>()
.map_err(|err| PyValueError::new_err(err.to_string()))?;
let mut basis_atoms_map: IndexMap<usize, Vec<(String, bool, PyShellOrder)>> =
IndexMap::new();
shell_types.iter().zip(shell_to_atom_map.iter()).for_each(
|(shell_type, atom_idx)| {
if *shell_type == 0 {
// S shell
basis_atoms_map.entry(*atom_idx).or_insert(vec![]).push((
"S".to_string(),
true,
PyShellOrder::CartOrder(Some(CartOrder::qchem(0).cart_tuples)),
));
} else if *shell_type == 1 {
// P shell
basis_atoms_map.entry(*atom_idx).or_insert(vec![]).push((
"P".to_string(),
true,
PyShellOrder::CartOrder(Some(CartOrder::qchem(1).cart_tuples)),
));
} else if *shell_type == -1 {
// SP shell
basis_atoms_map
.entry(*atom_idx)
.or_insert(vec![])
.extend_from_slice(&[
(
"S".to_string(),
true,
PyShellOrder::CartOrder(Some(
CartOrder::qchem(0).cart_tuples,
)),
),
(
"P".to_string(),
true,
PyShellOrder::CartOrder(Some(
CartOrder::qchem(1).cart_tuples,
)),
),
]);
} else if *shell_type < 0 {
// Cartesian D shell or higher
let l = shell_type.unsigned_abs();
let l_usize = l
.to_usize()
.unwrap_or_else(|| panic!("Unable to convert the angular momentum value `|{shell_type}|` to `usize`."));
basis_atoms_map.entry(*atom_idx).or_insert(vec![]).push((
ANGMOM_LABELS[l_usize].to_string(),
true,
PyShellOrder::CartOrder(Some(CartOrder::qchem(l).cart_tuples)),
));
} else {
// Pure D shell or higher
let l = shell_type.unsigned_abs();
let l_usize = l
.to_usize()
.unwrap_or_else(|| panic!("Unable to convert the angular momentum value `|{shell_type}|` to `usize`."));
basis_atoms_map.entry(*atom_idx).or_insert(vec![]).push((
ANGMOM_LABELS[l_usize].to_string(),
false,
PyShellOrder::PureOrder(PyPureOrder::Standard(true)),
));
}
},
);
let pybao = basis_atoms_map
.into_iter()
.map(|(atom_idx, v)| {
let element = elements
.get(nuclei[atom_idx])
.map(|el| el.symbol.to_string())
.ok_or_else(|| PyValueError::new_err(format!("Unable to identify an element for atom index `{atom_idx}`.")))?;
Ok((element, v))
})
.collect::<Result<Vec<_>, _>>()
.map(|basis_atoms| Self::new(basis_atoms));
pybao
})
.collect::<Result<Vec<_>, _>>();
let idx_width = sp_paths.len().ilog10().to_usize().unwrap_or(4).max(4) + 1;
let sp_path_width = sp_paths
.iter()
.map(|sp_path| sp_path.chars().count())
.max()
.unwrap_or(10)
.max(10);
let table_width = idx_width + sp_path_width + 4;
qsym2_output!("");
"Each single-point calculation has associated with it a `PyBasisAngularOrder` object.\n\
The table below shows the `PyBasisAngularOrder` index in the generated list and the\n\
corresponding single-point calculation.".log_output_display();
qsym2_output!("{}", "┈".repeat(table_width));
qsym2_output!(" {:<idx_width$} {:<}", "Index", "Q-Chem job");
qsym2_output!("{}", "┈".repeat(table_width));
sp_paths.iter().enumerate().for_each(|(i, sp_path)| {
qsym2_output!(" {:<idx_width$} {:<}", i, sp_path);
});
qsym2_output!("{}", "┈".repeat(table_width));
qsym2_output!("");
pybaos
}
}
impl PyBasisAngularOrder {
/// Extracts the information in the [`PyBasisAngularOrder`] structure into `QSym2`'s native
/// [`BasisAngularOrder`] structure.
///
/// # Arguments
///
/// * `mol` - The molecule with which the basis set information is associated.
///
/// # Returns
///
/// The [`BasisAngularOrder`] structure with the same information.
///
/// # Errors
///
/// Errors if the number of atoms or the atom elements in `mol` do not match the number of
/// atoms and atom elements in `self`, or if incorrect shell order types are specified.
pub(crate) fn to_qsym2<'b, 'a: 'b>(
&'b self,
mol: &'a Molecule,
) -> Result<BasisAngularOrder, anyhow::Error> {
ensure!(
self.basis_atoms.len() == mol.atoms.len(),
"The number of basis atoms does not match the number of ordinary atoms."
);
let basis_atoms = self
.basis_atoms
.iter()
.zip(mol.atoms.iter())
.flat_map(|((element, basis_shells), atom)| {
ensure!(
*element == atom.atomic_symbol,
"Expected element `{element}`, but found atom `{}`.",
atom.atomic_symbol
);
let bss = basis_shells
.iter()
.flat_map(|(angmom, cart, shell_order)| {
create_basis_shell(angmom, *cart, shell_order)
})
.collect::<Vec<_>>();
Ok(BasisAtom::new(atom, &bss))
})
.collect::<Vec<_>>();
Ok(BasisAngularOrder::new(&basis_atoms))
}
}
/// Python-exposed enumerated type to marshall basis spin constraint information between Rust and
/// Python.
#[pyclass]
#[derive(Clone)]
pub enum PySpinConstraint {
/// Variant for restricted spin constraint. Only two spin spaces are exposed.
Restricted,
/// Variant for unrestricted spin constraint. Only two spin spaces arranged in decreasing-$`m`$
/// order (*i.e.* $`(\alpha, \beta)`$) are exposed.
Unrestricted,
/// Variant for generalised spin constraint. Only two spin spaces arranged in decreasing-$`m`$
/// order (*i.e.* $`(\alpha, \beta)`$) are exposed.
Generalised,
}
impl From<PySpinConstraint> for SpinConstraint {
fn from(pysc: PySpinConstraint) -> Self {
match pysc {
PySpinConstraint::Restricted => SpinConstraint::Restricted(2),
PySpinConstraint::Unrestricted => SpinConstraint::Unrestricted(2, false),
PySpinConstraint::Generalised => SpinConstraint::Generalised(2, false),
}
}
}
impl TryFrom<SpinConstraint> for PySpinConstraint {
type Error = anyhow::Error;
fn try_from(sc: SpinConstraint) -> Result<Self, Self::Error> {
match sc {
SpinConstraint::Restricted(2) => Ok(PySpinConstraint::Restricted),
SpinConstraint::Unrestricted(2, false) => Ok(PySpinConstraint::Unrestricted),
SpinConstraint::Generalised(2, false) => Ok(PySpinConstraint::Generalised),
_ => Err(format_err!(
"`PySpinConstraint` can only support two spin spaces."
)),
}
}
}
#[cfg(feature = "integrals")]
#[pyclass]
#[derive(Clone)]
/// Python-exposed structure to marshall basis shell contraction information between Rust and
/// Python.
///
/// # Constructor arguments
///
/// * `basis_shell` - A triplet of the form `(angmom, cart, order)` where:
/// * `angmom` is a symbol such as `"S"` or `"P"` for the angular momentum of the shell,
/// * `cart` is a boolean indicating if the functions in the shell are Cartesian (`true`)
/// or pure / solid harmonics (`false`), and
/// * `order` specifies how the functions in the shell are ordered:
/// * if `cart` is `true`, `order` can be `None` for lexicographic order, or a list of
/// tuples `(lx, ly, lz)` specifying a custom order for the Cartesian functions where
/// `lx`, `ly`, and `lz` are the $`x`$-, $`y`$-, and $`z`$-exponents;
/// * if `cart` is `false`, `order` can be `true` for increasing-$`m`$ order, `false` for
/// decreasing-$`m`$ order, or a list of $`m`$ values for custom order.
///
/// Python type: `tuple[str, bool, bool | Optional[list[tuple[int, int, int]]]]`.
/// * `primitives` - A list of tuples, each of which contains the exponent and the contraction
/// coefficient of a Gaussian primitive in this shell. Python type: `list[tuple[float, float]]`.
/// * `cart_origin` - A fixed-size list of length 3 containing the Cartesian coordinates of the
/// origin $`\mathbf{R}`$ of this shell in Bohr radii. Python type: `list[float]`.
/// * `k` - An optional fixed-size list of length 3 containing the Cartesian components of the
/// $`\mathbf{k}`$ vector of this shell that appears in the complex phase factor
/// $`\exp[i\mathbf{k} \cdot (\mathbf{r} - \mathbf{R})]`$. Python type: `Optional[list[float]]`.
pub struct PyBasisShellContraction {
/// A triplet of the form `(angmom, cart, order)` where:
/// * `angmom` is a symbol such as `"S"` or `"P"` for the angular momentum of the shell,
/// * `cart` is a boolean indicating if the functions in the shell are Cartesian (`true`)
/// or pure / solid harmonics (`false`), and
/// * `order` specifies how the functions in the shell are ordered:
/// * if `cart` is `true`, `order` can be `None` for lexicographic order, or a list of
/// tuples `(lx, ly, lz)` specifying a custom order for the Cartesian functions where
/// `lx`, `ly`, and `lz` are the $`x`$-, $`y`$-, and $`z`$-exponents;
/// * if `cart` is `false`, `order` can be `true` for increasing-$`m`$ order, `false` for
/// decreasing-$`m`$ order, or a list of $`m`$ values for custom order.
///
/// Python type: `tuple[str, bool, bool | Optional[list[tuple[int, int, int]]]]`.
pub basis_shell: (String, bool, PyShellOrder),
/// A list of tuples, each of which contains the exponent and the contraction coefficient of a
/// Gaussian primitive in this shell.
///
/// Python type: `list[tuple[float, float]]`.
pub primitives: Vec<(f64, f64)>,
/// A fixed-size list of length 3 containing the Cartesian coordinates of the origin
/// $`\mathbf{R}`$ of this shell in Bohr radii.
///
/// Python type: `list[float]`.
pub cart_origin: [f64; 3],
/// An optional fixed-size list of length 3 containing the Cartesian components of the
/// $`\mathbf{k}`$ vector of this shell that appears in the complex phase factor
/// $`\exp[i\mathbf{k} \cdot (\mathbf{r} - \mathbf{R})]`$.
///
/// Python type: `Optional[list[float]]`.
pub k: Option<[f64; 3]>,
}
#[cfg(feature = "integrals")]
#[pymethods]
impl PyBasisShellContraction {
/// Creates a new `PyBasisShellContraction` structure.
///
/// # Arguments
///
/// * `basis_shell` - A triplet of the form `(angmom, cart, order)` where:
/// * `angmom` is a symbol such as `"S"` or `"P"` for the angular momentum of the shell,
/// * `cart` is a boolean indicating if the functions in the shell are Cartesian (`true`)
/// or pure / solid harmonics (`false`), and
/// * `order` specifies how the functions in the shell are ordered:
/// * if `cart` is `true`, `order` can be `None` for lexicographic order, or a list of
/// tuples `(lx, ly, lz)` specifying a custom order for the Cartesian functions where
/// `lx`, `ly`, and `lz` are the $`x`$-, $`y`$-, and $`z`$-exponents;
/// * if `cart` is `false`, `order` can be `true` for increasing-$`m`$ or `false` for
/// decreasing-$`m`$ order.
///
/// Python type: `tuple[str, bool, bool | Optional[list[tuple[int, int, int]]]]`.
/// * `primitives` - A list of tuples, each of which contains the exponent and the contraction
/// coefficient of a Gaussian primitive in this shell. Python type: `list[tuple[float, float]]`.
/// * `cart_origin` - A fixed-size list of length 3 containing the Cartesian coordinates of the
/// origin of this shell. Python type: `list[float]`.
/// * `k` - An optional fixed-size list of length 3 containing the Cartesian components of the
/// $`\mathbf{k}`$ vector of this shell. Python type: `Optional[list[float]]`.
#[new]
pub fn new(
basis_shell: (String, bool, PyShellOrder),
primitives: Vec<(f64, f64)>,
cart_origin: [f64; 3],
k: Option<[f64; 3]>,
) -> Self {
Self {
basis_shell,
primitives,
cart_origin,
k,
}
}
}
#[cfg(feature = "integrals")]
impl TryFrom<PyBasisShellContraction> for BasisShellContraction<f64, f64> {
type Error = anyhow::Error;
fn try_from(pybsc: PyBasisShellContraction) -> Result<Self, Self::Error> {
let (angmom, cart, shell_order) = pybsc.basis_shell;
let basis_shell = create_basis_shell(&angmom, cart, &shell_order)?;
let contraction = GaussianContraction::<f64, f64> {
primitives: pybsc.primitives,
};
let cart_origin = Point3::from_slice(&pybsc.cart_origin);
let k = pybsc.k.map(|k| Vector3::from_row_slice(&k));
Ok(Self {
basis_shell,
contraction,
cart_origin,
k,
})
}
}
// ================
// Helper functions
// ================
/// Creates a [`BasisShell`] structure from the `(angmom, cart, shell_order)` triplet.
///
/// # Arguments
/// * `angmom` is a symbol such as `"S"` or `"P"` for the angular momentum of the shell,
/// * `cart` is a boolean indicating if the functions in the shell are Cartesian (`true`)
/// or pure / solid harmonics (`false`), and
/// * `shell_order` specifies how the functions in the shell are ordered:
/// * if `cart` is `true`, `order` can be `None` for lexicographic order, or a list of
/// tuples `(lx, ly, lz)` specifying a custom order for the Cartesian functions where
/// `lx`, `ly`, and `lz` are the $`x`$-, $`y`$-, and $`z`$-exponents;
/// * if `cart` is `false`, `order` can be `true` for increasing-$`m`$ or `false` for
/// decreasing-$`m`$ order.
///
/// # Returns
///
/// A [`BasisShell`] structure.
///
/// # Errors
///
/// Errors if `angmom` is not a valid angular momentum, or if there is a mismatch between `cart`
/// and `shell_order`.
fn create_basis_shell(
angmom: &str,
cart: bool,
shell_order: &PyShellOrder,
) -> Result<BasisShell, anyhow::Error> {
let l = ANGMOM_INDICES
.get(angmom)
.unwrap_or_else(|| panic!("`{angmom}` is not a valid angular momentum."));
let shl_ord = if cart {
let cart_order = match shell_order {
PyShellOrder::CartOrder(cart_tuples_opt) => {
if let Some(cart_tuples) = cart_tuples_opt {
CartOrder::new(cart_tuples)?
} else {
CartOrder::lex(*l)
}
}
PyShellOrder::PureOrder(_) => {
log::error!(
"Cartesian shell order expected, but specification for pure shell order found."
);
bail!(
"Cartesian shell order expected, but specification for pure shell order found."
)
}
};
ShellOrder::Cart(cart_order)
} else {
match shell_order {
PyShellOrder::PureOrder(pypureorder) => match pypureorder {
PyPureOrder::Standard(increasingm) => {
if *increasingm {
ShellOrder::Pure(PureOrder::increasingm(*l))
} else {
ShellOrder::Pure(PureOrder::decreasingm(*l))
}
}
PyPureOrder::Custom(mls) => ShellOrder::Pure(PureOrder::new(mls)?),
},
PyShellOrder::CartOrder(_) => {
log::error!(
"Pure shell order expected, but specification for Cartesian shell order found."
);
bail!(
"Pure shell order expected, but specification for Cartesian shell order found."
)
}
}
};
Ok::<_, anyhow::Error>(BasisShell::new(*l, shl_ord))
}
// =================
// Exposed functions
// =================
#[cfg(feature = "integrals")]
#[pyfunction]
/// Calculates the real-valued two-centre overlap matrix for a basis set.
///
/// # Arguments
///
/// * `basis_set` - A list of lists of [`PyBasisShellContraction`]. Each inner list contains shells
/// on one atom. Python type: `list[list[PyBasisShellContraction]]`.
///
/// # Returns
///
/// A two-dimensional array containing the real two-centre overlap values.
///
/// # Panics
///
/// Panics if any shell contains a finite $`\mathbf{k}`$ vector.
pub fn calc_overlap_2c_real<'py>(
py: Python<'py>,
basis_set: Vec<Vec<PyBasisShellContraction>>,
) -> PyResult<Bound<'py, PyArray2<f64>>> {
let bscs = BasisSet::new(
basis_set
.into_iter()
.map(|basis_atom| {
basis_atom
.into_iter()
.map(|pybsc| BasisShellContraction::<f64, f64>::try_from(pybsc))
.collect::<Result<Vec<_>, _>>()
})
.collect::<Result<Vec<_>, _>>()
.map_err(|err| PyValueError::new_err(err.to_string()))?,
);
let sao_2c = py.allow_threads(|| {
let stc = build_shell_tuple_collection![
<s1, s2>;
false, false;
&bscs, &bscs;
f64
];
stc.overlap([0, 0])
.pop()
.expect("Unable to retrieve the two-centre overlap matrix.")
});
let pysao_2c = sao_2c.into_pyarray_bound(py);
Ok(pysao_2c)
}
#[cfg(feature = "integrals")]
#[pyfunction]
/// Calculates the complex-valued two-centre overlap matrix for a basis set.
///
/// # Arguments
///
/// * `basis_set` - A list of lists of [`PyBasisShellContraction`]. Each inner list contains shells
/// on one atom. Python type: `list[list[PyBasisShellContraction]]`.
/// * `complex_symmetric` - A boolean indicating if the complex-symmetric overlap is to be
/// calculated.
///
/// # Returns
///
/// A two-dimensional array containing the complex two-centre overlap values.
pub fn calc_overlap_2c_complex<'py>(
py: Python<'py>,
basis_set: Vec<Vec<PyBasisShellContraction>>,
complex_symmetric: bool,
) -> PyResult<Bound<'py, PyArray2<Complex<f64>>>> {
let bscs = BasisSet::new(
basis_set
.into_iter()
.map(|basis_atom| {
basis_atom
.into_iter()
.map(|pybsc| BasisShellContraction::<f64, f64>::try_from(pybsc))
.collect::<Result<Vec<_>, _>>()
})
.collect::<Result<Vec<_>, _>>()
.map_err(|err| PyValueError::new_err(err.to_string()))?,
);
let sao_2c = py.allow_threads(|| {
let stc = build_shell_tuple_collection![
<s1, s2>;
!complex_symmetric, false;
&bscs, &bscs;
Complex<f64>
];
stc.overlap([0, 0])
.pop()
.expect("Unable to retrieve the two-centre overlap matrix.")
});
let pysao_2c = sao_2c.into_pyarray_bound(py);
Ok(pysao_2c)
}
#[cfg(feature = "integrals")]
#[pyfunction]
/// Calculates the real-valued four-centre overlap tensor for a basis set.
///
/// # Arguments
///
/// * `basis_set` - A list of lists of [`PyBasisShellContraction`]. Each inner list contains shells
/// on one atom. Python type: `list[list[PyBasisShellContraction]]`.
///
/// # Returns
///
/// A four-dimensional array containing the real four-centre overlap values.
///
/// # Panics
///
/// Panics if any shell contains a finite $`\mathbf{k}`$ vector.
pub fn calc_overlap_4c_real<'py>(
py: Python<'py>,
basis_set: Vec<Vec<PyBasisShellContraction>>,
) -> PyResult<Bound<'py, PyArray4<f64>>> {
let bscs = BasisSet::new(
basis_set
.into_iter()
.map(|basis_atom| {
basis_atom
.into_iter()
.map(|pybsc| BasisShellContraction::<f64, f64>::try_from(pybsc))
.collect::<Result<Vec<_>, _>>()
})
.collect::<Result<Vec<_>, _>>()
.map_err(|err| PyValueError::new_err(err.to_string()))?,
);
let sao_4c = py.allow_threads(|| {
let stc = build_shell_tuple_collection![
<s1, s2, s3, s4>;
false, false, false, false;
&bscs, &bscs, &bscs, &bscs;
f64
];
stc.overlap([0, 0, 0, 0])
.pop()
.expect("Unable to retrieve the four-centre overlap tensor.")
});
let pysao_4c = sao_4c.into_pyarray_bound(py);
Ok(pysao_4c)
}
#[cfg(feature = "integrals")]
#[pyfunction]
/// Calculates the complex-valued four-centre overlap tensor for a basis set.
///
/// # Arguments
///
/// * `basis_set` - A list of lists of [`PyBasisShellContraction`]. Each inner list contains shells
/// on one atom. Python type: `list[list[PyBasisShellContraction]]`.
/// * `complex_symmetric` - A boolean indicating if the complex-symmetric overlap tensor is to be
/// calculated.
///
/// # Returns
///
/// A four-dimensional array containing the complex four-centre overlap values.
pub fn calc_overlap_4c_complex<'py>(
py: Python<'py>,
basis_set: Vec<Vec<PyBasisShellContraction>>,
complex_symmetric: bool,
) -> PyResult<Bound<'py, PyArray4<Complex<f64>>>> {
let bscs = BasisSet::new(
basis_set
.into_iter()
.map(|basis_atom| {
basis_atom
.into_iter()
.map(|pybsc| BasisShellContraction::<f64, f64>::try_from(pybsc))
.collect::<Result<Vec<_>, _>>()
})
.collect::<Result<Vec<_>, _>>()
.map_err(|err| PyValueError::new_err(err.to_string()))?,
);
let sao_4c = py.allow_threads(|| {
let stc = build_shell_tuple_collection![
<s1, s2, s3, s4>;
!complex_symmetric, !complex_symmetric, false, false;
&bscs, &bscs, &bscs, &bscs;
Complex<f64>
];
stc.overlap([0, 0, 0, 0])
.pop()
.expect("Unable to retrieve the four-centre overlap tensor.")
});
let pysao_4c = sao_4c.into_pyarray_bound(py);
Ok(pysao_4c)
}