1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
//! Python bindings for QSym² symmetry analysis of electron densities.
use std::path::PathBuf;
use anyhow::format_err;
use ndarray::{Array2, Array4};
use num_complex::Complex;
use numpy::{PyArray2, PyArrayMethods};
use pyo3::exceptions::{PyIOError, PyRuntimeError};
use pyo3::prelude::*;
use crate::analysis::EigenvalueComparisonMode;
use crate::auxiliary::molecule::Molecule;
use crate::basis::ao::BasisAngularOrder;
use crate::bindings::python::integrals::PyBasisAngularOrder;
use crate::bindings::python::representation_analysis::PyArray4RC;
use crate::drivers::representation_analysis::angular_function::AngularFunctionRepAnalysisParams;
use crate::drivers::representation_analysis::density::{
DensityRepAnalysisDriver, DensityRepAnalysisParams,
};
use crate::drivers::representation_analysis::{
CharacterTableDisplay, MagneticSymmetryAnalysisKind,
};
use crate::drivers::symmetry_group_detection::SymmetryGroupDetectionResult;
use crate::drivers::QSym2Driver;
use crate::io::format::qsym2_output;
use crate::io::{read_qsym2_binary, QSym2FileType};
use crate::symmetry::symmetry_group::{
MagneticRepresentedSymmetryGroup, UnitaryRepresentedSymmetryGroup,
};
use crate::symmetry::symmetry_transformation::SymmetryTransformationKind;
use crate::target::density::Density;
type C128 = Complex<f64>;
// ==================
// Struct definitions
// ==================
/// Python-exposed structure to marshall real electron density information between Rust and
/// Python.
///
/// # Constructor arguments
///
/// * `complex_symmetric` - A boolean indicating if inner products involving this density
/// are complex-symmetric. Python type: `bool`.
/// * `density_matrix` - The real density matrix describing this density.
/// Python type: `numpy.2darray[float]`.
/// * `threshold` - The threshold for comparisons. Python type: `float`.
#[pyclass]
#[derive(Clone)]
pub struct PyDensityReal {
/// A boolean indicating if inner products involving this density should be the
/// complex-symmetric bilinear form, rather than the conventional Hermitian sesquilinear form.
///
/// Python type: `bool`.
complex_symmetric: bool,
/// The real density matrix describing this density.
///
/// Python type: `numpy.2darray[float]`.
density_matrix: Array2<f64>,
/// The threshold for comparing densities.
///
/// Python type: `float`.
threshold: f64,
}
#[pymethods]
impl PyDensityReal {
/// Constructs a real Python-exposed electron density.
///
/// # Arguments
///
/// * `complex_symmetric` - A boolean indicating if inner products involving this density
/// are complex-symmetric. Python type: `bool`.
/// * `density_matrix` - The real density matrix describing this density.
/// Python type: `numpy.2darray[float]`.
/// * `threshold` - The threshold for comparisons. Python type: `float`.
#[new]
fn new(
complex_symmetric: bool,
density_matrix: Bound<'_, PyArray2<f64>>,
threshold: f64,
) -> Self {
let det = Self {
complex_symmetric,
density_matrix: density_matrix.to_owned_array(),
threshold,
};
det
}
}
impl PyDensityReal {
/// Extracts the information in the [`PyDensityReal`] structure into `QSym2`'s native
/// [`Density`] structure.
///
/// # Arguments
///
/// * `bao` - The [`BasisAngularOrder`] for the basis set in which the density is given.
/// * `mol` - The molecule with which the density is associated.
///
/// # Returns
///
/// The [`Density`] structure with the same information.
///
/// # Errors
///
/// Errors if the [`Density`] fails to build.
fn to_qsym2<'b, 'a: 'b>(
&'b self,
bao: &'a BasisAngularOrder,
mol: &'a Molecule,
) -> Result<Density<f64>, anyhow::Error> {
let den = Density::<f64>::builder()
.bao(bao)
.complex_symmetric(self.complex_symmetric)
.mol(mol)
.density_matrix(self.density_matrix.clone())
.threshold(self.threshold)
.build()
.map_err(|err| format_err!(err));
den
}
}
/// Python-exposed structure to marshall complex electron density information between Rust and
/// Python.
///
/// # Constructor arguments
///
/// * `complex_symmetric` - A boolean indicating if inner products involving this density
/// are complex-symmetric. Python type: `bool`.
/// * `density_matrix` - The complex density matrix describing this density.
/// Python type: `numpy.2darray[complex]`.
/// * `threshold` - The threshold for comparisons. Python type: `float`.
#[pyclass]
#[derive(Clone)]
pub struct PyDensityComplex {
/// A boolean indicating if inner products involving this density should be the
/// complex-symmetric bilinear form, rather than the conventional Hermitian sesquilinear form.
///
/// Python type: `bool`.
complex_symmetric: bool,
/// The complex density matrix describing this density.
///
/// Python type: `numpy.2darray[complex]`.
density_matrix: Array2<C128>,
/// The threshold for comparing densities.
///
/// Python type: `float`.
threshold: f64,
}
#[pymethods]
impl PyDensityComplex {
/// Constructs a complex Python-exposed electron density.
///
/// # Arguments
///
/// * `complex_symmetric` - A boolean indicating if inner products involving this density
/// are complex-symmetric. Python type: `bool`.
/// * `density_matrix` - The complex density matrix describing this density.
/// Python type: `numpy.2darray[complex]`.
/// * `threshold` - The threshold for comparisons. Python type: `float`.
#[new]
fn new(
complex_symmetric: bool,
density_matrix: Bound<'_, PyArray2<C128>>,
threshold: f64,
) -> Self {
let det = Self {
complex_symmetric,
density_matrix: density_matrix.to_owned_array(),
threshold,
};
det
}
}
impl PyDensityComplex {
/// Extracts the information in the [`PyDensityComplex`] structure into `QSym2`'s native
/// [`Density`] structure.
///
/// # Arguments
///
/// * `bao` - The [`BasisAngularOrder`] for the basis set in which the density is given.
/// * `mol` - The molecule with which the density is associated.
///
/// # Returns
///
/// The [`Density`] structure with the same information.
///
/// # Errors
///
/// Errors if the [`Density`] fails to build.
fn to_qsym2<'b, 'a: 'b>(
&'b self,
bao: &'a BasisAngularOrder,
mol: &'a Molecule,
) -> Result<Density<C128>, anyhow::Error> {
let den = Density::<C128>::builder()
.bao(bao)
.complex_symmetric(self.complex_symmetric)
.mol(mol)
.density_matrix(self.density_matrix.clone())
.threshold(self.threshold)
.build()
.map_err(|err| format_err!(err));
den
}
}
// ================
// Enum definitions
// ================
/// Python-exposed enumerated type to handle the union type `PyDensityReal | PyDensityComplex` in
/// Python.
#[derive(FromPyObject)]
pub enum PyDensity {
/// Variant for real Python-exposed electron density.
Real(PyDensityReal),
/// Variant for complex Python-exposed electron density.
Complex(PyDensityComplex),
}
// =====================
// Functions definitions
// =====================
/// Python-exposed function to perform representation symmetry analysis for real and complex
/// electron densities and log the result via the `qsym2-output` logger at the `INFO` level.
///
/// # Arguments
///
/// * `inp_sym` - A path to the [`QSym2FileType::Sym`] file containing the symmetry-group detection
/// result for the system. This will be used to construct abstract groups and character tables for
/// representation analysis. Python type: `str`.
/// * `pydens` - A sequence of Python-exposed electron densities whose density matrices are of type
/// `float64` or `complex128`. Each density is accompanied by a description string.
/// Python type: `list[tuple[str, PyDensityReal | PyDensityComplex]]`.
/// * `sao_spatial_4c` - The atomic-orbital four-centre overlap matrix whose elements are of type
/// `float64` or `complex128`. Python type: `numpy.4darray[float] | numpy.4darray[complex]`.
/// * `sao_spatial_4c_h` - The optional complex-symmetric atomic-orbital four-centre overlap matrix
/// whose elements are of type `float64` or `complex128`. This is required if antiunitary symmetry
/// operations are involved. Python type: `numpy.2darray[float] | numpy.2darray[complex] | None`.
/// * `integrality_threshold` - The threshold for verifying if subspace multiplicities are
/// integral. Python type: `float`.
/// * `linear_independence_threshold` - The threshold for determining the linear independence
/// subspace via the non-zero eigenvalues of the orbit overlap matrix. Python type: `float`.
/// * `use_magnetic_group` - An option indicating if the magnetic group is to be used for symmetry
/// analysis, and if so, whether unitary representations or unitary-antiunitary corepresentations
/// should be used. Python type: `None | MagneticSymmetryAnalysisKind`.
/// * `use_double_group` - A boolean indicating if the double group of the prevailing symmetry
/// group is to be used for representation analysis instead. Python type: `bool`.
/// * `use_cayley_table` - A boolean indicating if the Cayley table for the group, if available,
/// should be used to speed up the calculation of orbit overlap matrices. Python type: `bool`.
/// * `symmetry_transformation_kind` - An enumerated type indicating the type of symmetry
/// transformations to be performed on the origin electron density to generate the orbit. Python
/// type: `SymmetryTransformationKind`.
/// * `eigenvalue_comparison_mode` - An enumerated type indicating the mode of comparison of orbit
/// overlap eigenvalues with the specified `linear_independence_threshold`.
/// Python type: `EigenvalueComparisonMode`.
/// * `write_character_table` - A boolean indicating if the character table of the prevailing
/// symmetry group is to be printed out. Python type: `bool`.
/// * `infinite_order_to_finite` - The finite order with which infinite-order generators are to be
/// interpreted to form a finite subgroup of the prevailing infinite group. This finite subgroup
/// will be used for symmetry analysis. Python type: `Optional[int]`.
/// * `angular_function_integrality_threshold` - The threshold for verifying if subspace
/// multiplicities are integral for the symmetry analysis of angular functions. Python type:
/// `float`.
/// * `angular_function_linear_independence_threshold` - The threshold for determining the linear
/// independence subspace via the non-zero eigenvalues of the orbit overlap matrix for the symmetry
/// analysis of angular functions. Python type: `float`.
/// * `angular_function_max_angular_momentum` - The maximum angular momentum order to be used in
/// angular function symmetry analysis. Python type: `int`.
#[pyfunction]
#[pyo3(signature = (
inp_sym,
pydens,
pybao,
integrality_threshold,
linear_independence_threshold,
use_magnetic_group,
use_double_group,
use_cayley_table,
symmetry_transformation_kind,
eigenvalue_comparison_mode,
sao_spatial_4c,
sao_spatial_4c_h=None,
write_character_table=true,
infinite_order_to_finite=None,
angular_function_integrality_threshold=1e-7,
angular_function_linear_independence_threshold=1e-7,
angular_function_max_angular_momentum=2
))]
pub fn rep_analyse_densities(
py: Python<'_>,
inp_sym: PathBuf,
pydens: Vec<(String, PyDensity)>,
pybao: &PyBasisAngularOrder,
integrality_threshold: f64,
linear_independence_threshold: f64,
use_magnetic_group: Option<MagneticSymmetryAnalysisKind>,
use_double_group: bool,
use_cayley_table: bool,
symmetry_transformation_kind: SymmetryTransformationKind,
eigenvalue_comparison_mode: EigenvalueComparisonMode,
sao_spatial_4c: PyArray4RC,
sao_spatial_4c_h: Option<PyArray4RC>,
write_character_table: bool,
infinite_order_to_finite: Option<u32>,
angular_function_integrality_threshold: f64,
angular_function_linear_independence_threshold: f64,
angular_function_max_angular_momentum: u32,
) -> PyResult<()> {
let pd_res: SymmetryGroupDetectionResult =
read_qsym2_binary(inp_sym.clone(), QSym2FileType::Sym)
.map_err(|err| PyIOError::new_err(err.to_string()))?;
let mut file_name = inp_sym.to_path_buf();
file_name.set_extension(QSym2FileType::Sym.ext());
qsym2_output!(
"Symmetry-group detection results read in from {}.",
file_name.display(),
);
qsym2_output!("");
let mol = &pd_res.pre_symmetry.recentred_molecule;
let bao = pybao
.to_qsym2(mol)
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
let afa_params = AngularFunctionRepAnalysisParams::builder()
.integrality_threshold(angular_function_integrality_threshold)
.linear_independence_threshold(angular_function_linear_independence_threshold)
.max_angular_momentum(angular_function_max_angular_momentum)
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
let sda_params = DensityRepAnalysisParams::<f64>::builder()
.integrality_threshold(integrality_threshold)
.linear_independence_threshold(linear_independence_threshold)
.use_magnetic_group(use_magnetic_group.clone())
.use_double_group(use_double_group)
.use_cayley_table(use_cayley_table)
.symmetry_transformation_kind(symmetry_transformation_kind)
.eigenvalue_comparison_mode(eigenvalue_comparison_mode)
.write_character_table(if write_character_table {
Some(CharacterTableDisplay::Symbolic)
} else {
None
})
.infinite_order_to_finite(infinite_order_to_finite)
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
let any_complex = pydens
.iter()
.any(|(_, pyden)| matches!(pyden, PyDensity::Complex(_)));
match (any_complex, &sao_spatial_4c) {
(false, PyArray4RC::Real(pysao4c_r)) => {
// Both coefficients and sao_4c are real.
let dens = pydens
.iter()
.map(|(_, pyden)| match pyden {
PyDensity::Real(pyden_r) => pyden_r.to_qsym2(&bao, mol),
PyDensity::Complex(_) => panic!("Unexpected complex density."),
})
.collect::<Result<Vec<_>, _>>()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
let dens_ref = dens
.iter()
.zip(pydens.iter())
.map(|(den, (desc, _))| (desc.clone(), den))
.collect::<Vec<_>>();
let sao_spatial_4c = pysao4c_r.to_owned_array();
match &use_magnetic_group {
Some(MagneticSymmetryAnalysisKind::Corepresentation) => {
let mut da_driver =
DensityRepAnalysisDriver::<MagneticRepresentedSymmetryGroup, f64>::builder(
)
.parameters(&sda_params)
.angular_function_parameters(&afa_params)
.densities(dens_ref)
.sao_spatial_4c(&sao_spatial_4c)
.sao_spatial_4c_h(None)
.symmetry_group(&pd_res)
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
py.allow_threads(|| {
da_driver
.run()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))
})?
}
Some(MagneticSymmetryAnalysisKind::Representation) | None => {
let mut da_driver =
DensityRepAnalysisDriver::<UnitaryRepresentedSymmetryGroup, f64>::builder()
.parameters(&sda_params)
.angular_function_parameters(&afa_params)
.densities(dens_ref)
.sao_spatial_4c(&sao_spatial_4c)
.sao_spatial_4c_h(None)
.symmetry_group(&pd_res)
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
py.allow_threads(|| {
da_driver
.run()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))
})?
}
};
}
(_, _) => {
// At least one of coefficients or sao_4c are not real.
let dens: Vec<Density<C128>> = pydens
.iter()
.map(|(_, pyden)| match pyden {
PyDensity::Real(pyden_r) => {
pyden_r.to_qsym2(&bao, mol).map(|den_r| den_r.into())
}
PyDensity::Complex(pyden_c) => pyden_c.to_qsym2(&bao, mol),
})
.collect::<Result<Vec<_>, _>>()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
let dens_ref = dens
.iter()
.zip(pydens.iter())
.map(|(den, (desc, _))| (desc.clone(), den))
.collect::<Vec<_>>();
let (sao_spatial_4c_c, sao_spatial_4c_h_c): (Array4<C128>, Option<Array4<C128>>) =
match sao_spatial_4c {
PyArray4RC::Real(pysao4c_r) => {
(pysao4c_r.to_owned_array().mapv(Complex::from), None)
}
PyArray4RC::Complex(pysao4c_c) => (
pysao4c_c.to_owned_array(),
sao_spatial_4c_h.map(|v| match v {
PyArray4RC::Real(pysao4c_h_r) => {
pysao4c_h_r.to_owned_array().mapv(Complex::from)
}
PyArray4RC::Complex(pysao4c_h_c) => pysao4c_h_c.to_owned_array(),
}),
),
};
match &use_magnetic_group {
Some(MagneticSymmetryAnalysisKind::Corepresentation) => {
let mut da_driver = DensityRepAnalysisDriver::<
MagneticRepresentedSymmetryGroup,
C128,
>::builder()
.parameters(&sda_params)
.angular_function_parameters(&afa_params)
.densities(dens_ref)
.sao_spatial_4c(&sao_spatial_4c_c)
.sao_spatial_4c_h(sao_spatial_4c_h_c.as_ref())
.symmetry_group(&pd_res)
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
py.allow_threads(|| {
da_driver
.run()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))
})?
}
Some(MagneticSymmetryAnalysisKind::Representation) | None => {
let mut da_driver =
DensityRepAnalysisDriver::<UnitaryRepresentedSymmetryGroup, C128>::builder(
)
.parameters(&sda_params)
.angular_function_parameters(&afa_params)
.densities(dens_ref)
.sao_spatial_4c(&sao_spatial_4c_c)
.sao_spatial_4c_h(sao_spatial_4c_h_c.as_ref())
.symmetry_group(&pd_res)
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
py.allow_threads(|| {
da_driver
.run()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))
})?
}
};
}
}
Ok(())
}