1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
//! Python bindings for QSym² symmetry-group detection.
//!
//! See [`crate::drivers::symmetry_group_detection`] for more information.
use std::collections::HashMap;
use std::fmt;
use std::path::PathBuf;
use anyhow::{self, format_err};
use derive_builder::Builder;
use nalgebra::{Point3, Vector3};
use numpy::{PyArray1, ToPyArray};
use pyo3::exceptions::PyRuntimeError;
use pyo3::prelude::*;
use crate::auxiliary::atom::{Atom, ElementMap};
use crate::auxiliary::molecule::Molecule;
use crate::drivers::symmetry_group_detection::{
SymmetryGroupDetectionDriver, SymmetryGroupDetectionParams,
};
use crate::drivers::QSym2Driver;
#[allow(unused_imports)]
use crate::io::QSym2FileType;
use crate::symmetry::symmetry_core::Symmetry;
use crate::symmetry::symmetry_element::{AntiunitaryKind, SymmetryElementKind};
use crate::symmetry::symmetry_element_order::ElementOrder;
// ===========================
// Struct and enum definitions
// ===========================
// ----------
// PyMolecule
// ----------
/// Python-exposed structure to marshall molecular structure information between Rust and Python.
///
/// # Constructor arguments
///
/// * `atoms` - The ordinary atoms in the molecule. Python type: `list[tuple[str, tuple[float,
/// float, float]]]`.
/// * `threshold` - Threshold for comparing molecules. Python type: `float`.
/// * `magnetic_field` - An optional uniform external magnetic field. Python type:
/// `Optional[tuple[float, float, float]]`.
/// * `electric_field` - An optional uniform external electric field. Python type:
/// `Optional[tuple[float, float, float]]`.
#[pyclass]
#[derive(Clone)]
pub struct PyMolecule {
/// The ordinary atoms in the molecule.
///
/// Python type: `list[tuple[str, tuple[float, float, float]]]`
#[pyo3(get)]
pub atoms: Vec<(String, [f64; 3])>,
/// An optional uniform external magnetic field.
///
/// Python type: `Optional[tuple[float, float, float]]`
#[pyo3(get)]
pub magnetic_field: Option<[f64; 3]>,
/// An optional uniform external electric field.
///
/// Python type: `Optional[tuple[float, float, float]]`
#[pyo3(get)]
pub electric_field: Option<[f64; 3]>,
/// Threshold for comparing molecules.
///
/// Python type: `float`
#[pyo3(get)]
pub threshold: f64,
}
#[pymethods]
impl PyMolecule {
/// Creates a new `PyMolecule` structure.
///
/// # Arguments
///
/// * `atoms` - The ordinary atoms in the molecule. Python type: `list[tuple[str, tuple[float,
/// float, float]]]`.
/// * `threshold` - Threshold for comparing molecules. Python type: `float`.
/// * `magnetic_field` - An optional uniform external magnetic field. Python type:
/// `Optional[tuple[float, float, float]]`.
/// * `electric_field` - An optional uniform external electric field. Python type:
/// `Optional[tuple[float, float, float]]`.
#[new]
pub fn new(
atoms: Vec<(String, [f64; 3])>,
threshold: f64,
magnetic_field: Option<[f64; 3]>,
electric_field: Option<[f64; 3]>,
) -> Self {
Self {
atoms,
threshold,
magnetic_field,
electric_field,
}
}
}
impl From<PyMolecule> for Molecule {
fn from(pymol: PyMolecule) -> Self {
let emap = ElementMap::new();
let mut mol = Self::from_atoms(
&pymol
.atoms
.iter()
.map(|(ele, r)| {
Atom::new_ordinary(ele, Point3::new(r[0], r[1], r[2]), &emap, pymol.threshold)
})
.collect::<Vec<_>>(),
pymol.threshold,
);
mol.set_magnetic_field(pymol.magnetic_field.map(Vector3::from_iterator));
mol.set_electric_field(pymol.electric_field.map(Vector3::from_iterator));
mol
}
}
// ---------------------
// PySymmetryElementKind
// ---------------------
/// Python-exposed structure to marshall symmetry element kind information one-way from Rust to
/// Python.
#[pyclass]
#[derive(Clone, Hash, PartialEq, Eq)]
pub enum PySymmetryElementKind {
/// Variant denoting proper symmetry elements.
Proper,
/// Variant denoting time-reversed proper symmetry elements.
ProperTR,
/// Variant denoting improper symmetry elements (mirror-plane convention).
ImproperMirrorPlane,
/// Variant denoting time-reversed improper symmetry elements (mirror-plane convention).
ImproperMirrorPlaneTR,
}
impl fmt::Display for PySymmetryElementKind {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
PySymmetryElementKind::Proper => write!(f, "Proper"),
PySymmetryElementKind::ProperTR => write!(f, "Time-reversed proper"),
PySymmetryElementKind::ImproperMirrorPlane => {
write!(f, "Improper (mirror-plane convention)")
}
PySymmetryElementKind::ImproperMirrorPlaneTR => {
write!(f, "Time-reversed improper (mirror-plane convention)")
}
}
}
}
impl TryFrom<&SymmetryElementKind> for PySymmetryElementKind {
type Error = anyhow::Error;
fn try_from(symkind: &SymmetryElementKind) -> Result<Self, Self::Error> {
match symkind {
SymmetryElementKind::Proper(None) => Ok(Self::Proper),
SymmetryElementKind::Proper(Some(AntiunitaryKind::TimeReversal)) => Ok(Self::ProperTR),
SymmetryElementKind::ImproperMirrorPlane(None) => Ok(Self::ImproperMirrorPlane),
SymmetryElementKind::ImproperMirrorPlane(Some(AntiunitaryKind::TimeReversal)) => {
Ok(Self::ImproperMirrorPlaneTR)
}
_ => Err(format_err!(
"Symmetry element kind `{symkind}` is not yet supported in Python."
)),
}
}
}
// ----------
// PySymmetry
// ----------
/// Python-exposed structure to marshall symmetry information one-way from Rust to Python.
#[pyclass]
#[derive(Clone, Builder)]
pub struct PySymmetry {
/// The name of the symmetry group.
#[pyo3(get)]
group_name: String,
/// The symmetry elements.
///
/// Python type: `dict[PySymmetryElementKind, dict[int, list[numpy.1darray[float]]]]`
elements: HashMap<PySymmetryElementKind, HashMap<i32, Vec<Py<PyArray1<f64>>>>>,
/// The symmetry generators.
///
/// Python type: `dict[PySymmetryElementKind, dict[int, list[numpy.1darray[float]]]]`
generators: HashMap<PySymmetryElementKind, HashMap<i32, Vec<Py<PyArray1<f64>>>>>,
}
impl PySymmetry {
fn builder() -> PySymmetryBuilder {
PySymmetryBuilder::default()
}
}
#[pymethods]
impl PySymmetry {
/// Returns a boolean indicating if the group is infinite.
pub fn is_infinite(&self) -> bool {
self.elements
.values()
.any(|kind_elements| kind_elements.contains_key(&-1))
|| self
.generators
.values()
.any(|kind_generators| kind_generators.contains_key(&-1))
}
/// Returns symmetry elements of all *finite* orders of a given kind.
///
/// # Arguments
///
/// * `kind` - The symmetry element kind. Python type: `PySymmetryElementKind`.
///
/// # Returns
///
/// A hashmap where the keys are integers indicating the orders of the elements and the values
/// are vectors of one-dimensional arrays, each of which gives the axis of a symmetry element.
/// If the order value is `-1`, then the associated elements have infinite order.
///
/// Python type: `dict[int, list[numpy.1darray[float]]]`.
pub fn get_elements_of_kind(
&self,
kind: &PySymmetryElementKind,
) -> PyResult<HashMap<i32, Vec<Py<PyArray1<f64>>>>> {
self.elements
.get(kind)
.cloned()
.ok_or(PyRuntimeError::new_err(format!(
"Elements of kind `{kind}` not found."
)))
}
/// Returns symmetry generators of *finite* and *infinite* orders of a given kind.
///
/// # Arguments
///
/// * `kind` - The symmetry generator kind. Python type: `PySymmetryElementKind`.
///
/// # Returns
///
/// A hashmap where the keys are integers indicating the orders of the generators and the values
/// are vectors of one-dimensional arrays, each of which gives the axis of a symmetry generator.
/// If the order value is `-1`, then the associated generators have infinite order.
///
/// Python type: `dict[int, list[numpy.1darray[float]]]`.
pub fn get_generators_of_kind(
&self,
kind: &PySymmetryElementKind,
) -> PyResult<HashMap<i32, Vec<Py<PyArray1<f64>>>>> {
self.generators
.get(kind)
.cloned()
.ok_or(PyRuntimeError::new_err(format!(
"Elements of kind `{kind}` not found."
)))
}
}
impl TryFrom<&Symmetry> for PySymmetry {
type Error = anyhow::Error;
fn try_from(sym: &Symmetry) -> Result<Self, Self::Error> {
let group_name = sym
.group_name
.clone()
.ok_or(format_err!("Symmetry group name not found."))?;
let elements = sym
.elements
.iter()
.map(|(symkind, kind_elements)| {
let pysymkind = PySymmetryElementKind::try_from(symkind)?;
let pykind_elements = kind_elements
.iter()
.map(|(order, order_elements)| {
let order_i32 = match order {
ElementOrder::Int(ord) => i32::try_from(*ord)?,
ElementOrder::Inf => -1,
};
let pyorder_elements = order_elements
.iter()
.map(|ele| {
Python::with_gil(|py| {
ele.raw_axis()
.iter()
.cloned()
.collect::<Vec<_>>()
.to_pyarray_bound(py)
.unbind()
})
})
.collect::<Vec<_>>();
Ok::<_, Self::Error>((order_i32, pyorder_elements))
})
.collect::<Result<HashMap<i32, Vec<_>>, _>>()?;
Ok::<_, Self::Error>((pysymkind, pykind_elements))
})
.collect::<Result<HashMap<_, _>, _>>()?;
let generators = sym
.generators
.iter()
.map(|(symkind, kind_generators)| {
let pysymkind = PySymmetryElementKind::try_from(symkind)?;
let pykind_generators = kind_generators
.iter()
.map(|(order, order_generators)| {
let order_i32 = match order {
ElementOrder::Int(ord) => i32::try_from(*ord)?,
ElementOrder::Inf => -1,
};
let pyorder_generators = order_generators
.iter()
.map(|ele| {
Python::with_gil(|py| {
ele.raw_axis()
.iter()
.cloned()
.collect::<Vec<_>>()
.to_pyarray_bound(py)
.unbind()
})
})
.collect::<Vec<_>>();
Ok::<_, Self::Error>((order_i32, pyorder_generators))
})
.collect::<Result<HashMap<i32, Vec<_>>, _>>()?;
Ok::<_, Self::Error>((pysymkind, pykind_generators))
})
.collect::<Result<HashMap<_, _>, _>>()?;
PySymmetry::builder()
.group_name(group_name)
.elements(elements)
.generators(generators)
.build()
.map_err(|err| format_err!(err))
}
}
// =========
// Functions
// =========
/// Python-exposed function to perform symmetry-group detection and log the result via the
/// `qsym2-output` logger at the `INFO` level.
///
/// See [`crate::drivers::symmetry_group_detection`] for more information.
///
/// # Arguments
///
/// * `inp_xyz` - An optional string providing the path to an XYZ file containing the molecule to
/// be analysed. Only one of `inp_xyz` or `inp_mol` can be specified. Python type: `Optional[str]`.
/// * `inp_mol` - An optional `PyMolecule` structure containing the molecule to be analysed. Only
/// one of `inp_xyz` or `inp_mol` can be specified. Python type: `PyMolecule`.
/// * `out_sym` - An optional name for the [`QSym2FileType::Sym`] file to be saved that contains
/// the serialised results of the symmetry-group detection. Python type: `Optional[str]`.
/// * `moi_thresholds` - Thresholds for comparing moments of inertia. Python type: `list[float]`.
/// * `distance_thresholds` - Thresholds for comparing distances. Python type: `list[float]`.
/// * `time_reversal` - A boolean indicating whether elements involving time reversal should also
/// be considered. Python type: `bool`.
/// * `write_symmetry_elements` - A boolean indicating if detected symmetry elements should be
/// printed in the output. Python type: `bool`.
/// * `fictitious_magnetic_field` - An optional fictitious uniform external magnetic field. Python
/// type: `Optional[tuple[float, float, float]]`.
/// * `fictitious_electric_field` - An optional fictitious uniform external electric field. Python
/// type: `Optional[tuple[float, float, float]]`.
///
/// # Errors
///
/// Returns an error if any intermediate step in the symmetry-group detection procedure fails.
#[pyfunction]
#[pyo3(signature = (
inp_xyz,
inp_mol,
out_sym,
moi_thresholds,
distance_thresholds,
time_reversal,
write_symmetry_elements=true,
fictitious_magnetic_field=None,
fictitious_electric_field=None,
))]
pub fn detect_symmetry_group(
py: Python<'_>,
inp_xyz: Option<PathBuf>,
inp_mol: Option<PyMolecule>,
out_sym: Option<PathBuf>,
moi_thresholds: Vec<f64>,
distance_thresholds: Vec<f64>,
time_reversal: bool,
write_symmetry_elements: bool,
fictitious_magnetic_field: Option<[f64; 3]>,
fictitious_electric_field: Option<[f64; 3]>,
) -> PyResult<(PySymmetry, Option<PySymmetry>)> {
py.allow_threads(|| {
let params = SymmetryGroupDetectionParams::builder()
.distance_thresholds(&distance_thresholds)
.moi_thresholds(&moi_thresholds)
.time_reversal(time_reversal)
.fictitious_magnetic_fields(
fictitious_magnetic_field
.map(|bs| vec![(Point3::<f64>::origin(), Vector3::new(bs[0], bs[1], bs[2]))]),
)
.fictitious_electric_fields(
fictitious_electric_field
.map(|es| vec![(Point3::<f64>::origin(), Vector3::new(es[0], es[1], es[2]))]),
)
.field_origin_com(true)
.write_symmetry_elements(write_symmetry_elements)
.result_save_name(out_sym)
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
let inp_mol = inp_mol.map(Molecule::from);
let mut pd_driver = SymmetryGroupDetectionDriver::builder()
.parameters(¶ms)
.xyz(inp_xyz)
.molecule(inp_mol.as_ref())
.build()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
pd_driver
.run()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?;
let pyunitary_symmetry: PySymmetry = (&pd_driver
.result()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?
.unitary_symmetry)
.try_into()
.map_err(|err: anyhow::Error| PyRuntimeError::new_err(err.to_string()))?;
let pymagnetic_symmetry: Option<PySymmetry> = pd_driver
.result()
.map_err(|err| PyRuntimeError::new_err(err.to_string()))?
.magnetic_symmetry
.as_ref()
.map(|magsym| {
magsym
.try_into()
.map_err(|err: anyhow::Error| PyRuntimeError::new_err(err.to_string()))
})
.transpose()?;
Ok((pyunitary_symmetry, pymagnetic_symmetry))
})
}