1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
//! Symbolic characters as algebraic integers that are sums of unity roots.
use std::cmp::Ordering;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::{Add, Mul, MulAssign, Neg, Sub};
use approx;
use derive_builder::Builder;
use indexmap::{IndexMap, IndexSet};
use num::Complex;
use num_traits::{ToPrimitive, Zero};
use serde::{Deserialize, Serialize};
use crate::auxiliary::misc::HashableFloat;
use crate::chartab::unityroot::UnityRoot;
type F = fraction::GenericFraction<u32>;
#[cfg(test)]
#[path = "character_tests.rs"]
mod character_tests;
// ==================
// Struct definitions
// ==================
/// Structure to represent algebraic group characters.
///
/// Partial orders between characters are based on their complex moduli and
/// phases in the interval $`[0, 2\pi)`$ with $`0`$ being the smallest.
#[derive(Builder, Clone, Serialize, Deserialize)]
pub struct Character {
/// The unity roots and their multiplicities constituting this character.
#[builder(setter(custom))]
terms: IndexMap<UnityRoot, usize>,
/// A threshold for approximate partial ordering comparisons.
#[builder(setter(custom), default = "1e-14")]
threshold: f64,
}
impl CharacterBuilder {
fn terms(&mut self, ts: &[(UnityRoot, usize)]) -> &mut Self {
let mut terms = IndexMap::<UnityRoot, usize>::new();
// This ensures that if there are two identical unity roots in ts, their multiplicities are
// accumulated.
for (ur, mult) in ts.iter() {
*terms.entry(ur.clone()).or_default() += mult;
}
self.terms = Some(terms);
self
}
fn threshold(&mut self, thresh: f64) -> &mut Self {
if thresh >= 0.0 {
self.threshold = Some(thresh);
} else {
log::error!(
"Threshold value {} is invalid. Threshold must be non-negative.",
thresh
);
self.threshold = None;
}
self
}
}
impl Character {
/// Returns a builder to construct a new character.
///
/// # Returns
///
/// A builder to construct a new character.
fn builder() -> CharacterBuilder {
CharacterBuilder::default()
}
/// Constructs a character from an array of unity roots and multiplicities.
///
/// # Returns
///
/// A character.
#[must_use]
pub fn new(ts: &[(UnityRoot, usize)]) -> Self {
Self::builder()
.terms(ts)
.build()
.expect("Unable to construct a character.")
}
/// Returns the threshold for approximate partial ordering comparisons.
pub fn threshold(&self) -> f64 {
self.threshold
}
/// The complex representation of this character.
///
/// # Returns
///
/// The complex value corresponding to this character.
///
/// # Panics
///
/// Panics when encountering any multiplicity that cannot be converted to `f64`.
#[must_use]
pub fn complex_value(&self) -> Complex<f64> {
self.terms
.iter()
.filter_map(|(uroot, &mult)| {
if mult > 0 {
Some(
uroot.complex_value()
* mult
.to_f64()
.unwrap_or_else(|| panic!("Unable to convert `{mult}` to `f64`.")),
)
} else {
None
}
})
.sum()
}
/// Gets a numerical form for this character, nicely formatted up to a
/// required precision.
///
/// # Arguments
///
/// * `precision` - The number of decimal places.
///
/// # Returns
///
/// The formatted numerical form.
#[must_use]
pub fn get_numerical(&self, real_only: bool, precision: usize) -> String {
let Complex { re, im } = self.complex_value();
if real_only {
format!("{:+.precision$}", {
if approx::relative_eq!(
re,
0.0,
epsilon = self.threshold,
max_relative = self.threshold
) && re < 0.0
{
-re
} else {
re
}
})
} else {
format!(
"{:+.precision$} {} {:.precision$}i",
{
if approx::relative_eq!(
re,
0.0,
epsilon = self.threshold,
max_relative = self.threshold
) && re < 0.0
{
-re
} else {
re
}
},
{
if im >= 0.0
|| approx::relative_eq!(
im,
0.0,
epsilon = self.threshold,
max_relative = self.threshold
)
{
"+"
} else {
"-"
}
},
im.abs()
)
}
}
/// Gets the concise form for this character.
///
/// The concise form shows an integer or an integer followed by $`i`$ if the character is
/// purely integer or integer imaginary. Otherwise, the concise form is either the analytic
/// form of the character showing all contributing unity roots and their multiplicities, or a
/// complex number formatted to 3 d.p.
///
/// # Arguments
///
/// * `num_non_int` - A flag indicating of non-integers should be shown in numerical form
/// instead of analytic.
///
/// # Returns
///
/// The concise form of the character.
fn get_concise(&self, num_non_int: bool) -> String {
let complex_value = self.complex_value();
let precision = 3i32;
let precision_u = usize::try_from(precision.unsigned_abs())
.expect("Unable to represent `precision` as `usize`.");
if approx::relative_eq!(
complex_value.im,
0.0,
epsilon = 10.0f64.powi(-precision - 1).max(self.threshold),
max_relative = 10.0f64.powi(-precision - 1).max(self.threshold)
) {
// Zero imaginary
// Zero or non-zero real
let rounded_re = complex_value.re.round_factor(self.threshold);
if approx::relative_eq!(
rounded_re,
rounded_re.round(),
epsilon = 10.0f64.powi(-precision - 1).max(self.threshold),
max_relative = 10.0f64.powi(-precision - 1).max(self.threshold)
) {
// Integer real
if approx::relative_eq!(
rounded_re,
0.0,
epsilon = 10.0f64.powi(-precision - 1).max(self.threshold),
max_relative = 10.0f64.powi(-precision - 1).max(self.threshold)
) {
"0".to_string()
} else {
format!("{:+.0}", complex_value.re)
}
} else {
// Non-integer real
if num_non_int {
format!("{:+.precision_u$}", complex_value.re)
} else {
format!("{self:?}")
}
}
} else if approx::relative_eq!(
complex_value.re,
0.0,
epsilon = self.threshold,
max_relative = self.threshold
) {
// Non-zero imaginary
// Zero real
let rounded_im = complex_value.im.round_factor(self.threshold);
if approx::relative_eq!(
rounded_im,
rounded_im.round(),
epsilon = 10.0f64.powi(-precision - 1).max(self.threshold),
max_relative = 10.0f64.powi(-precision - 1).max(self.threshold)
) {
// Integer imaginary
if approx::relative_eq!(
rounded_im.abs(),
1.0,
epsilon = 10.0f64.powi(-precision - 1).max(self.threshold),
max_relative = 10.0f64.powi(-precision - 1).max(self.threshold)
) {
// i or -i
let imag = if rounded_im > 0.0 { "+i" } else { "-i" };
imag.to_string()
} else {
// ki
format!("{:+.0}i", complex_value.im)
}
} else {
// Non-integer imaginary
if num_non_int {
format!("{:+.precision_u$}i", complex_value.im)
} else {
format!("{self:?}")
}
}
} else {
// Non-zero imaginary
// Non-zero real
let rounded_re = complex_value.re.round_factor(self.threshold);
let rounded_im = complex_value.im.round_factor(self.threshold);
if (approx::relative_ne!(
rounded_re,
rounded_re.round(),
epsilon = 10.0f64.powi(-precision - 1).max(self.threshold),
max_relative = 10.0f64.powi(-precision - 1).max(self.threshold)
) || approx::relative_ne!(
rounded_im,
rounded_im.round(),
epsilon = 10.0f64.powi(-precision - 1).max(self.threshold),
max_relative = 10.0f64.powi(-precision - 1).max(self.threshold)
)) && !num_non_int
{
format!("{self:?}")
} else {
format!(
"{:+.precision_u$} {} {:.precision_u$}i",
complex_value.re,
{
if complex_value.im > 0.0 {
"+"
} else {
"-"
}
},
complex_value.im.abs()
)
}
}
}
/// Gets the simplified form for this character.
///
/// The simplified form gathers terms whose unity roots differ from each other by a factor of
/// $`-1`$.
///
/// # Returns
///
/// The simplified form of the character.
///
/// # Panics
///
/// Panics when the multiplicity of any unitary root cannot be retrieved.
#[must_use]
pub fn simplify(&self) -> Self {
let mut urs: IndexSet<_> = self.terms.keys().rev().collect();
let mut simplified_terms = Vec::<(UnityRoot, usize)>::with_capacity(urs.len());
let f12 = F::new(1u32, 2u32);
while !urs.is_empty() {
let ur = urs
.pop()
.expect("Unable to retrieve an unexamined unity root.");
let nur_option = urs
.iter()
.find(|&test_ur| {
test_ur.fraction == ur.fraction + f12 || test_ur.fraction == ur.fraction - f12
})
.copied();
if let Some(nur) = nur_option {
let res = urs.shift_remove(nur);
debug_assert!(res);
let ur_mult = self
.terms
.get(ur)
.unwrap_or_else(|| panic!("Unable to retrieve the multiplicity of {ur}."));
let nur_mult = self
.terms
.get(nur)
.unwrap_or_else(|| panic!("Unable to retrieve the multiplicity of {nur}."));
match ur_mult.cmp(nur_mult) {
Ordering::Less => simplified_terms.push((nur.clone(), nur_mult - ur_mult)),
Ordering::Greater => simplified_terms.push((ur.clone(), ur_mult - nur_mult)),
Ordering::Equal => (),
};
} else {
let ur_mult = self
.terms
.get(ur)
.unwrap_or_else(|| panic!("Unable to retrieve the multiplicity of {ur}."));
simplified_terms.push((ur.clone(), *ur_mult));
}
}
Character::builder()
.terms(&simplified_terms)
.threshold(self.threshold)
.build()
.expect("Unable to construct a simplified character.")
}
/// The complex conjugate of this character.
///
/// # Returns
///
/// The complex conjugate of this character.
///
/// # Panics
///
/// Panics when the complex conjugate cannot be found.
#[must_use]
pub fn complex_conjugate(&self) -> Self {
Self::builder()
.terms(
&self
.terms
.iter()
.map(|(ur, mult)| (ur.complex_conjugate(), *mult))
.collect::<Vec<_>>(),
)
.threshold(self.threshold)
.build()
.unwrap_or_else(|_| panic!("Unable to construct the complex conjugate of `{self}`."))
}
}
// =====================
// Trait implementations
// =====================
impl PartialEq for Character {
fn eq(&self, other: &Self) -> bool {
(self.terms == other.terms) || {
let self_complex = self.complex_value();
let other_complex = other.complex_value();
let thresh = (self.threshold * other.threshold).sqrt();
approx::relative_eq!(
self_complex.re,
other_complex.re,
epsilon = thresh,
max_relative = thresh
) && approx::relative_eq!(
self_complex.im,
other_complex.im,
epsilon = thresh,
max_relative = thresh
)
}
}
}
impl Eq for Character {}
impl PartialOrd for Character {
/// Two characters are compared based on their constituent unity roots.
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
let mut self_terms = self.terms.clone();
self_terms.retain(|_, mult| *mult > 0);
self_terms.sort_by(|uroot1, _, uroot2, _| {
uroot1
.partial_cmp(uroot2)
.unwrap_or_else(|| panic!("{uroot1} and {uroot2} cannot be compared."))
});
let mut other_terms = other.terms.clone();
other_terms.retain(|_, mult| *mult > 0);
other_terms.sort_by(|uroot1, _, uroot2, _| {
uroot1
.partial_cmp(uroot2)
.unwrap_or_else(|| panic!("{uroot1} and {uroot2} cannot be compared."))
});
let self_terms_vec = self_terms.into_iter().collect::<Vec<_>>();
let other_terms_vec = other_terms.into_iter().collect::<Vec<_>>();
self_terms_vec.partial_cmp(&other_terms_vec)
}
}
impl fmt::Debug for Character {
/// Prints the full form for this character showing all contributing unity
/// roots and their multiplicities.
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let one = UnityRoot::new(0u32, 2u32);
let str_terms: Vec<String> = self
.terms
.clone()
.sorted_by(|k1, _, k2, _| {
k1.partial_cmp(k2)
.unwrap_or_else(|| panic!("{k1} and {k2} cannot be compared."))
})
.filter_map(|(root, mult)| {
if mult == 1 {
Some(format!("{root}"))
} else if mult == 0 {
None
} else if root == one {
Some(format!("{mult}"))
} else {
Some(format!("{mult}*{root}"))
}
})
.collect();
if str_terms.is_empty() {
write!(f, "0")
} else {
write!(f, "{}", str_terms.join(" + "))
}
}
}
impl fmt::Display for Character {
/// Prints the short form for this character that shows either an integer
/// or an imaginary integer or a compact complex number at 3 d.p.
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.get_concise(false))
}
}
impl Hash for Character {
fn hash<H: Hasher>(&self, state: &mut H) {
let terms_vec = self
.terms
.clone()
.sorted_by(|ur1, m1, ur2, m2| {
PartialOrd::partial_cmp(&(ur1.clone(), m1), &(ur2.clone(), m2)).unwrap_or_else(
|| {
panic!(
"{:?} anmd {:?} cannot be compared.",
(ur1.clone(), m1),
(ur2.clone(), m2)
)
},
)
})
.collect::<Vec<_>>();
terms_vec.hash(state);
}
}
// ----
// Zero
// ----
impl Zero for Character {
fn zero() -> Self {
Self::new(&[])
}
fn is_zero(&self) -> bool {
*self == Self::zero()
}
}
// ---
// Add
// ---
impl Add<&'_ Character> for &Character {
type Output = Character;
fn add(self, rhs: &Character) -> Self::Output {
let mut sum = self.clone();
for (ur, mult) in rhs.terms.iter() {
*sum.terms.entry(ur.clone()).or_default() += mult;
}
sum
}
}
impl Add<&'_ Character> for Character {
type Output = Character;
fn add(self, rhs: &Self) -> Self::Output {
&self + rhs
}
}
impl Add<Character> for &Character {
type Output = Character;
fn add(self, rhs: Character) -> Self::Output {
self + &rhs
}
}
impl Add<Character> for Character {
type Output = Character;
fn add(self, rhs: Self) -> Self::Output {
&self + &rhs
}
}
// ---
// Neg
// ---
impl Neg for &Character {
type Output = Character;
fn neg(self) -> Self::Output {
let f12 = F::new(1u32, 2u32);
let terms: IndexMap<_, _> = self
.terms
.iter()
.map(|(ur, mult)| {
let mut nur = ur.clone();
nur.fraction = (nur.fraction + f12).fract();
(nur, *mult)
})
.collect();
let mut nchar = self.clone();
nchar.terms = terms;
nchar
}
}
impl Neg for Character {
type Output = Character;
fn neg(self) -> Self::Output {
-&self
}
}
// ---
// Sub
// ---
impl Sub<&'_ Character> for &Character {
type Output = Character;
fn sub(self, rhs: &Character) -> Self::Output {
self + (-rhs)
}
}
impl Sub<&'_ Character> for Character {
type Output = Character;
fn sub(self, rhs: &Self) -> Self::Output {
&self + (-rhs)
}
}
impl Sub<Character> for &Character {
type Output = Character;
fn sub(self, rhs: Character) -> Self::Output {
self + (-&rhs)
}
}
impl Sub<Character> for Character {
type Output = Character;
fn sub(self, rhs: Self) -> Self::Output {
&self + (-&rhs)
}
}
// ---------
// MulAssign
// ---------
impl MulAssign<usize> for Character {
fn mul_assign(&mut self, rhs: usize) {
self.terms.iter_mut().for_each(|(_, mult)| {
*mult *= rhs;
});
}
}
// ---
// Mul
// ---
impl Mul<usize> for &Character {
type Output = Character;
fn mul(self, rhs: usize) -> Self::Output {
let mut prod = self.clone();
prod *= rhs;
prod
}
}
impl Mul<usize> for Character {
type Output = Character;
fn mul(self, rhs: usize) -> Self::Output {
&self * rhs
}
}