1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
//! Modular linear algebra.

use std::collections::{HashMap, HashSet};
use std::error::Error;
use std::fmt::{self, Debug, Display};
use std::hash::Hash;
use std::ops::Div;
use std::panic;

use itertools::Itertools;
use log;
use ndarray::{s, Array1, Array2, Axis, LinalgScalar, ShapeBuilder, Zip};
use num_modular::ModularInteger;
use num_traits::{Inv, Pow, ToPrimitive, Zero};
use rayon::prelude::*;

use crate::auxiliary::misc::GramSchmidtError;

#[cfg(test)]
#[path = "modular_linalg_tests.rs"]
mod modular_linalg_tests;

/// Calculates the determinant of a square matrix over a finite integer field
/// using the Bereiss algorithm.
///
/// For more information, see
/// <https://stackoverflow.com/questions/66192894/precise-determinant-of-integer-nxn-matrix>.
///
/// # Arguments
///
/// * `mat` - A square matrix.
///
/// # Returns
///
/// The determinant of `mat` in the same field.
///
/// # Panics
///
/// Panics if `mat` is not a square matrix.
fn modular_determinant<T>(mat: &Array2<T>) -> T
where
    T: Clone + LinalgScalar + ModularInteger<Base = u32> + Div<Output = T>,
{
    assert_eq!(mat.ncols(), mat.nrows(), "A square matrix is expected.");
    let mut mat = mat.clone();
    let rep = mat
        .first()
        .expect("Unable to obtain the first element of `mat`.");
    let dim = mat.ncols();
    let mut sign = rep.convert(1u32);
    let mut prev = rep.convert(1u32);
    let zero = rep.convert(0u32);

    for i in 0..(dim - 1) {
        if mat[(i, i)] == zero {
            // Swap with another row having non-zero i-th element.
            let rel_swapto = mat.slice(s![(i + 1).., i]).iter().position(|x| *x != zero);
            if let Some(rel_index) = rel_swapto {
                let (mut mat_above, mut mat_below) = mat.view_mut().split_at(Axis(0), i + 1);
                let row_from = mat_above.slice_mut(s![i, ..]);
                let row_to = mat_below.slice_mut(s![rel_index, ..]);
                Zip::from(row_from).and(row_to).for_each(std::mem::swap);
                sign = -sign;
            } else {
                // All mat[.., i] are zero => zero determinant.
                return zero;
            }
        }
        for (j, k) in ((i + 1)..dim).cartesian_product((i + 1)..dim) {
            let numerator = mat[(j, k)] * mat[(i, i)] - mat[(j, i)] * mat[(i, k)];
            mat[(j, k)] = numerator / prev;
        }
        prev = mat[(i, i)];
    }
    sign * *mat
        .last()
        .expect("Unable to obtain the last element of `mat`.")
}

/// Converts an array into its unique reduced row echelon form using Gaussian
/// elimination over a finite integer field.
///
/// # Arguments
///
/// * `mat` - A rectangular matrix.
///
/// # Returns
///
/// * The reduced row echelon form of `mat`.
/// * The nullity of `mat`.
///
/// # Panics
///
/// Panics when the pivoting values are not unity.
fn modular_rref<T>(mat: &Array2<T>) -> (Array2<T>, usize)
where
    T: Clone + Copy + Debug + ModularInteger<Base = u32> + Div<Output = T>,
{
    let mut mat = mat.clone();
    let nrows = mat.nrows();
    let ncols = mat.ncols();
    let rep = mat
        .first()
        .expect("Unable to obtain the first element in `mat`.");
    let zero = rep.convert(0);
    let one = rep.convert(1);
    let mut rank = 0usize;

    let mut pivot_row = 0usize;
    let mut pivot_col = 0usize;

    while pivot_row < nrows && pivot_col < ncols {
        // Find the pivot in column pivot_col
        let rel_i_nonzero_option = mat
            .slice(s![pivot_row.., pivot_col])
            .iter()
            .position(|x| *x != zero);
        if let Some(rel_i_nonzero) = rel_i_nonzero_option {
            if rel_i_nonzero > 0 {
                // Possible pivot in this column at row (pivot_row + rel_i_nonzero)
                // Swap row pivot_row with row (pivot_row + rel_i_nonzero)
                let (mut mat_above, mut mat_below) =
                    mat.view_mut().split_at(Axis(0), pivot_row + 1);
                let row_from = mat_above.slice_mut(s![pivot_row, ..]);
                let row_to = mat_below.slice_mut(s![rel_i_nonzero - 1, ..]);
                Zip::from(row_from).and(row_to).for_each(std::mem::swap);
            }

            // Scale all elements in pivot row to make the pivot element equal to one
            let pivot_val = mat[(pivot_row, pivot_col)];
            for j in (pivot_col)..ncols {
                mat[(pivot_row, j)] = mat[(pivot_row, j)] / pivot_val;
            }

            // Eliminate below the pivot
            for i in (pivot_row + 1)..nrows {
                assert_eq!(mat[(pivot_row, pivot_col)], one);
                let f = mat[(i, pivot_col)];
                // row_i -= f * pivot_row
                // Fill with zeros the lower part of pivot column
                // This is essentially a subtraction but has been optimised away.
                mat[(i, pivot_col)] = zero;
                // Subtract all remaining elements in current row
                for j in (pivot_col + 1)..ncols {
                    let a = mat[(pivot_row, j)];
                    mat[(i, j)] = mat[(i, j)] - a * f;
                }
            }

            // Eliminate above the pivot
            for i in (0..pivot_row).rev() {
                assert_eq!(mat[(pivot_row, pivot_col)], one);
                let f = mat[(i, pivot_col)];
                // row_i -= f * pivot_row
                // Fill with zeros the upper part of pivot column
                mat[(i, pivot_col)] = zero;
                // Subtract all remaining elements in current row
                for j in (pivot_col + 1)..ncols {
                    let a = mat[(pivot_row, j)];
                    mat[(i, j)] = mat[(i, j)] - a * f;
                }
            }

            // Increase pivot row and column for the next while iteration
            pivot_row += 1;
            pivot_col += 1;

            // Pivot column increases rank.
            rank += 1;
        } else {
            // No pivot in this column; pass to next column.
            pivot_col += 1;
        }
    }
    (mat, ncols - rank)
}

/// Determines a set of basis vectors for the kernel of a matrix via Gaussian
/// elimination over a finite integer field.
///
/// The kernel of an $`m \times n`$ matrix $`\mathbf{M}`$ is the space of
/// the solutions to the equation
///
/// ```math
///     \mathbf{M} \mathbf{x} = \mathbf{0},
/// ```
///
/// where $`\mathbf{x}`$ is an $`n \times 1`$ column vector.
///
/// # Arguments
///
/// * `mat` - A rectangular matrix.
///
/// # Returns
///
/// A vector of basis vectors for the kernel of `mat`.
fn modular_kernel<T>(mat: &Array2<T>) -> Vec<Array1<T>>
where
    T: Clone + Copy + Debug + ModularInteger<Base = u32> + Div<Output = T>,
{
    let (mat_rref, nullity) = modular_rref(mat);
    let ncols = mat.ncols();
    let rep = mat
        .first()
        .expect("Unable to obtain the first element in `mat`.");
    let zero = rep.convert(0);
    let one = rep.convert(1);
    let pivot_cols: Vec<usize> = mat_rref
        .axis_iter(Axis(0))
        .filter_map(|row| row.iter().position(|&x| x != zero))
        .collect();
    let rank = ncols - nullity;
    assert_eq!(rank, pivot_cols.len());
    log::debug!("Rank: {}", rank);
    log::debug!("Kernel dim: {}", nullity);

    let pivot_cols_set: HashSet<usize> = pivot_cols.iter().copied().collect::<HashSet<_>>();
    let non_pivot_cols = (0..ncols).collect::<HashSet<_>>();
    let non_pivot_cols = non_pivot_cols.difference(&pivot_cols_set);
    non_pivot_cols
        .map(|&non_pivot_col| {
            let mut kernel_basis_vec = Array1::from_elem((ncols,), zero);
            kernel_basis_vec[non_pivot_col] = one;

            for (i, &pivot_col) in pivot_cols.iter().enumerate() {
                kernel_basis_vec[pivot_col] = -mat_rref[(i, non_pivot_col)];
            }
            let first_nonzero_pos = kernel_basis_vec
                .iter()
                .position(|&x| x != zero)
                .expect("Kernel basis vector cannot be zero.");
            let first_nonzero = kernel_basis_vec[first_nonzero_pos];
            kernel_basis_vec
                .iter_mut()
                .for_each(|x| *x = *x / first_nonzero);
            kernel_basis_vec
        })
        .collect()
}

#[derive(Debug, Clone)]
pub(crate) struct ModularEigError<'a, T> {
    mat: &'a Array2<T>,
}

impl<'a, T: Display + Debug> fmt::Display for ModularEigError<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Unable to diagonalise {}.", self.mat)
    }
}

impl<'a, T: Display + Debug> Error for ModularEigError<'a, T> {}

/// Determines the eigenvalues and eigenvector of a square matrix over a finite
/// integer field.
///
/// # Arguments
///
/// * `mat` - A square matrix of modular integers.
///
/// # Returns
///
/// A hashmap containing the eigenvalues and the associated eigenvectors.
/// One eigenvalue can be associated with multiple eigenvectors in cases of
/// degeneracy.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between matrix elements are encountered.
pub(crate) fn modular_eig<T>(
    mat: &Array2<T>,
) -> Result<HashMap<T, Vec<Array1<T>>>, ModularEigError<'_, T>>
where
    T: Clone
        + LinalgScalar
        + Display
        + Debug
        + ModularInteger<Base = u32>
        + Eq
        + Hash
        + panic::UnwindSafe
        + panic::RefUnwindSafe
        + Sync
        + Send,
{
    assert!(mat.is_square(), "Only square matrices are supported.");
    let dim = mat.nrows();
    let modulus_set: HashSet<u32> = mat
        .iter()
        .filter_map(|x| panic::catch_unwind(|| x.modulus()).ok())
        .collect();
    assert_eq!(
        modulus_set.len(),
        1,
        "Inconsistent ring moduli between matrix elements."
    );
    let modulus = *modulus_set
        .iter()
        .next()
        .expect("Unexpected empty `modulus_set`.");
    let rep = mat
        .iter()
        .find(|x| panic::catch_unwind(|| x.modulus()).is_ok())
        .expect("At least one modular integer with a known modulus should have been found.");
    let zero = T::zero();
    log::debug!("Diagonalising in GF({})...", modulus);

    let results: HashMap<T, Vec<Array1<T>>> = (0..modulus)
        .par_bridge()
        .filter_map(|lam| {
            let lamb = rep.convert(lam);
            let char_mat = mat - Array2::from_diag_elem(dim, lamb);
            let det = modular_determinant(&char_mat);
            if det == zero {
                let vecs = modular_kernel(&char_mat);
                log::debug!(
                    "{} is an eigenvalue with multiplicity {}.",
                    lamb,
                    vecs.len()
                );
                Some((lamb, vecs))
            } else {
                None
            }
        })
        .collect();
    let eigen_dim = results.values().fold(0usize, |acc, vecs| acc + vecs.len());
    if eigen_dim != dim {
        log::warn!(
            "Found {} / {} eigenvector{}. The matrix is not diagonalisable in GF({}).",
            eigen_dim,
            dim,
            if dim > 1 { "s" } else { "" },
            modulus
        );
        Err(ModularEigError { mat })
    } else {
        log::debug!(
            "Found {} / {} eigenvector{}. Eigensolver done in GF({}).",
            eigen_dim,
            dim,
            if dim > 1 { "s" } else { "" },
            modulus
        );

        Ok(results)
    }
}

/// Calculates the weighted Hermitian inner product between two vectors defined
/// as:
///
/// ```math
/// \langle \mathbf{u}, \mathbf{w} \rangle
/// = \lvert G \rvert^{-1} \sum_i
///     \frac{u_i \bar{w}_i}{\lvert K_i \rvert},
/// ```
///
/// where $`K_i`$ is the i-th conjugacy class of the group, and
/// $`\bar{w_i}`$ the character in $`\mathbf{w}`$ corresponding to the
/// inverse conjugacy class of $`K_i`$.
///
/// Note that, in $`\mathbb{C}`$, $`\bar{w}_i = w_i^*`$, but this is not true
/// in $`\mathrm{GF}(p)`$.
///
/// # Arguments
///
/// * `vec_pair` - A pair of vectors for which the Hermitian inner product is to be
/// calculated.
/// * `class_sizes` - The sizes of the conjugacy classes.
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate.
///
/// # Returns
/// The weighted Hermitian inner product.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between vector elements are encountered.
#[must_use]
pub(crate) fn weighted_hermitian_inprod<T>(
    vec_pair: (&Array1<T>, &Array1<T>),
    class_sizes: &[usize],
    perm_for_conj: Option<&Vec<usize>>,
) -> T
where
    T: Display
        + Debug
        + LinalgScalar
        + ModularInteger<Base = u32>
        + panic::UnwindSafe
        + panic::RefUnwindSafe,
{
    let (vec_u, vec_w) = vec_pair;
    assert_eq!(vec_u.len(), vec_w.len());
    assert_eq!(vec_u.len(), class_sizes.len());

    let modulus_set: HashSet<u32> = vec_u
        .iter()
        .chain(vec_w.iter())
        .filter_map(|x| panic::catch_unwind(|| x.modulus()).ok())
        .collect();
    assert_eq!(
        modulus_set.len(),
        1,
        "Inconsistent ring moduli between vector elements."
    );

    let rep = vec_u
        .iter()
        .chain(vec_w.iter())
        .find(|x| panic::catch_unwind(|| x.modulus()).is_ok())
        .expect("No known modulus found.");

    let vec_w_conj = if let Some(indices) = perm_for_conj {
        vec_w.select(Axis(0), indices)
    } else {
        vec_w.clone()
    };

    Zip::from(vec_u)
        .and(&vec_w_conj)
        .and(class_sizes)
        .fold(T::zero(), |acc, &u, &w_conj, &k| {
            acc + (u * w_conj)
                / rep.convert(
                    u32::try_from(k)
                        .unwrap_or_else(|_| panic!("Unable to convert `{k}` to `u32`.")),
                )
        })
        / rep.convert(
            u32::try_from(class_sizes.iter().sum::<usize>())
                .expect("Unable to convert the group order to `u32`."),
        )
}

/// Performs Gram--Schmidt orthogonalisation (but not normalisation) on a set of vectors with
/// respect to the inner product defined in [`self::weighted_hermitian_inprod`].
///
/// # Arguments
///
/// * `vs` - Vectors forming a basis for a subspace.
/// * `class_sizes` - Sizes for the conjugacy classes. This is required to compute the inner
/// product.
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate. This is
/// required to compute the inner product.
///
/// # Returns
///
/// The orthogonal vectors forming a basis for the same subspace.
///
/// # Errors
///
/// Errors when the orthogonalisation procedure fails, which occurs when there is linear dependency
/// between the basis vectors.
fn modular_gram_schmidt<'a, T>(
    vs: &'a [Array1<T>],
    class_sizes: &[usize],
    perm_for_conj: Option<&Vec<usize>>,
) -> Result<Vec<Array1<T>>, GramSchmidtError<'a, T>>
where
    T: Display
        + Debug
        + LinalgScalar
        + ModularInteger<Base = u32>
        + panic::UnwindSafe
        + panic::RefUnwindSafe,
{
    let mut us: Vec<Array1<T>> = Vec::with_capacity(vs.len());
    let mut us_sq_norm: Vec<T> = Vec::with_capacity(vs.len());
    for (i, vi) in vs.iter().enumerate() {
        // u[i] now initialised with v[i]
        us.push(vi.clone());

        // Project vi onto all uj (0 <= j < i)
        for j in 0..i {
            if Zero::is_zero(&us_sq_norm[j]) {
                log::error!("A zero-norm vector found: {}", us[j]);
                return Err(GramSchmidtError {
                    vecs: Some(vs),
                    mat: None,
                });
            }
            let p_uj_vi =
                weighted_hermitian_inprod((vi, &us[j]), class_sizes, perm_for_conj) / us_sq_norm[j];
            us[i] = &us[i] - us[j].map(|&x| x * p_uj_vi);
        }

        // Evaluate the squared norm of ui which will no longer be changed after this iteration.
        // us_sq_norm[i] now available.
        us_sq_norm.push(weighted_hermitian_inprod(
            (&us[i], &us[i]),
            class_sizes,
            perm_for_conj,
        ));
    }

    debug_assert!({
        us.iter().enumerate().all(|(i, ui)| {
            us.iter().enumerate().all(|(j, uj)| {
                let ov_ij = weighted_hermitian_inprod((ui, uj), class_sizes, perm_for_conj);
                i == j || Zero::is_zero(&ov_ij)
            })
        })
    });

    Ok(us)
}

#[derive(Debug, Clone)]
pub(crate) struct SplitSpaceError<'a, T> {
    mat: &'a Array2<T>,
    vecs: &'a [Array1<T>],
}

impl<'a, T: Display + Debug> fmt::Display for SplitSpaceError<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Unable to split the degenerate subspace spanned by {:#?} with {}.",
            self.vecs, self.mat
        )
    }
}

impl<'a, T: Display + Debug> Error for SplitSpaceError<'a, T> {}

/// Splits a space into smaller subspaces under the action of a matrix.
///
/// # Arguments
///
/// * `mat` - A matrix to act on the specified space.
/// * `vecs` - The basis vectors specifying the space.
/// * `class_sizes` - Sizes for the conjugacy classes. This is required to compute the inner
/// product defined in [`self::weighted_hermitian_inprod`].
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate. This is
/// required to compute the inner product defined in [`self::weighted_hermitian_inprod`].
///
/// # Returns
///
/// A vector of vectors of vectors, where each inner vector contains the basis
/// vectors for an $`n`$-dimensional subspace, $`n \ge 1`$.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between vector and matrix elements are found.
///
/// # Errors
///
/// Errors when the degeneracy subspace cannot be split, which occurs when any of the
/// orthogonalised vectors spanning the subspace is a null vector.
#[allow(clippy::too_many_lines)]
pub(crate) fn split_space<'a, T>(
    mat: &'a Array2<T>,
    vecs: &'a [Array1<T>],
    class_sizes: &[usize],
    perm_for_conj: Option<&Vec<usize>>,
) -> Result<Vec<Vec<Array1<T>>>, SplitSpaceError<'a, T>>
where
    T: Display
        + LinalgScalar
        + Debug
        + ModularInteger<Base = u32>
        + Eq
        + Hash
        + Zero
        + Inv
        + panic::UnwindSafe
        + panic::RefUnwindSafe
        + Sync
        + Send,
{
    let modulus_set: HashSet<u32> = vecs
        .iter()
        .flatten()
        .chain(mat.iter())
        .filter_map(|x| panic::catch_unwind(|| x.modulus()).ok())
        .collect();
    assert_eq!(
        modulus_set.len(),
        1,
        "Inconsistent ring moduli between vector and matrix elements."
    );

    let dim = vecs.len();
    log::debug!("Dimensionality of space to be split: {}", dim);
    let split_subspaces = if dim <= 1 {
        log::debug!("Nothing to do.");
        vec![Vec::from(vecs)]
    } else {
        // Orthogonalise the subspace basis
        let ortho_vecs = modular_gram_schmidt(vecs, class_sizes, perm_for_conj).map_err(|err| {
            log::warn!("{err}");
            SplitSpaceError { mat, vecs }
        })?;
        let ortho_vecs_mat = Array2::from_shape_vec(
            (class_sizes.len(), dim).f(),
            ortho_vecs.iter().flatten().copied().collect::<Vec<_>>(),
        )
        .expect("Unable to construct a two-dimensional matrix of the orthogonal vectors.");

        // Find the representation matrix of the action of `mat` on the basis vectors
        let ortho_vecs_mag = Array2::from_shape_vec(
            (dim, 1),
            ortho_vecs
                .iter()
                .map(|col_i| weighted_hermitian_inprod((col_i, col_i), class_sizes, perm_for_conj))
                .collect(),
        )
        .expect(
            "Unable to construct a column vector of the magnitudes of the orthogonalised vectors.",
        );
        if ortho_vecs_mag.iter().any(|x| Zero::is_zero(x)) {
            return Err(SplitSpaceError { mat, vecs });
        }

        // The division below is correct: `ortho_vecs_mag` (dim × 1) is broadcast to (dim × dim),
        // hence every row of the dividend is divided by the corresponding element of
        // `ortho_vecs_mag`.
        let nv_mat = mat.dot(&ortho_vecs_mat);
        let mut rep_mat_unnorm: Array2<T> = Array2::zeros((dim, dim));
        for (i, v) in ortho_vecs.iter().enumerate() {
            for (j, nv) in nv_mat.columns().into_iter().enumerate() {
                rep_mat_unnorm[[i, j]] =
                    weighted_hermitian_inprod((v, &nv.to_owned()), class_sizes, perm_for_conj);
            }
        }
        let rep_mat = rep_mat_unnorm / ortho_vecs_mag;

        // Diagonalise the representation matrix
        // Then use the eigenvectors to form linear combinations of the original
        // basis vectors and split the subspace
        let eigs = modular_eig(&rep_mat).map_err(|_| SplitSpaceError { mat, vecs })?;
        let n_subspaces = eigs.len();
        if n_subspaces == dim {
            log::debug!("{dim}-D space is completely split into {n_subspaces} 1-D subspaces.",);
        } else {
            log::debug!(
                "{dim}-D space is incompletely split into {n_subspaces} subspace{}.",
                if n_subspaces == 1 { "" } else { "s" }
            );
        }

        // Each eigenvalue of the representation matrix corresponds to one sub-subspace.
        eigs.iter().fold(vec![], |mut acc, (eigval, eigvecs)| {
            log::debug!(
                "Handling eigenvalue {} of the representation matrix...",
                eigval
            );
            acc.push(
                eigvecs
                    .iter()
                    .map(|vec| {
                        // Form linear combinations of the original basis vectors
                        let transformed_vec = ortho_vecs_mat.dot(vec);

                        // Normalise so that the first non-zero element is one
                        let first_non_zero = transformed_vec
                            .iter()
                            .find(|&x| !Zero::is_zero(x))
                            .expect("Unexpected zero eigenvector.");
                        Array1::from_vec(
                            transformed_vec
                                .iter()
                                .map(|x| *x / *first_non_zero)
                                .collect(),
                        )
                    })
                    .collect::<Vec<_>>(),
            );
            acc
        })
    };
    Ok(split_subspaces)
}

#[derive(Debug, Clone)]
pub(crate) struct Split2dSpaceError<'a, T> {
    vecs: &'a [Array1<T>],
}

impl<'a, T: Display + Debug> fmt::Display for Split2dSpaceError<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        writeln!(
            f,
            "Unable to greedily split the two-dimensional degenerate subspace spanned by",
        )?;
        for vec in self.vecs {
            writeln!(f, "  {vec}")?;
        }
        fmt::Result::Ok(())
    }
}

impl<'a, T: Display + Debug> Error for Split2dSpaceError<'a, T> {}

/// Splits a two-dimensional space using the trial-and-error approach suggested by
/// Schneider, G. J. A. Dixon's character table algorithm revisited.
/// *Journal of Symbolic Computation* **9**, 601–606 (1990),
/// [DOI](https://doi.org/10.1016/S0747-7171(08)80077-6).
///
/// In cases of ambiguity, the Frobenius--Schur indicators of the prospective irreps are computed
/// to help rule out invalid cases.
///
/// # Arguments
///
/// * `vecs` - The two basis vectors specifying the space.
/// * `class_sizes` - Sizes for the conjugacy classes. This is required to compute the inner
/// product defined in [`self::weighted_hermitian_inprod`].
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate. This is
/// required to compute the inner product defined in [`self::weighted_hermitian_inprod`].
///
/// # Returns
///
/// A vector of two vectors of vectors, where each inner vector contains the basis
/// vectors for a one-dimensional subspace.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between vector and matrix elements are found.
///
/// # Errors
///
/// Errors when the two-dimensional subspace cannot be split using this approach. This occurs when
/// the Frobenius--Schur indicators fail to rule out all prospective cases.
pub(crate) fn split_2d_space<'a, T>(
    vecs: &'a [Array1<T>],
    class_sizes: &[usize],
    sq_indices: &[usize],
    perm_for_conj: Option<&Vec<usize>>,
) -> Result<Vec<Vec<Array1<T>>>, Split2dSpaceError<'a, T>>
where
    T: Display
        + LinalgScalar
        + Debug
        + ModularInteger<Base = u32>
        + Eq
        + Hash
        + Zero
        + Inv
        + Pow<u32, Output = T>
        + panic::UnwindSafe
        + panic::RefUnwindSafe,
{
    assert_eq!(vecs.len(), 2, "Only two-dimensional spaces are allowed.");
    let rep = vecs
        .iter()
        .flatten()
        .find(|x| panic::catch_unwind(|| x.modulus()).is_ok())
        .expect("No known modulus found.");

    // Echelonise the basis so that v0 has first entry of 1, while v1 has first entry of 0.
    // This then ensures that v0 + ai*v1 (i = 0, 1) always has first entry of 1, thus satisfying
    // the requirement for 'normalised' eigenvectors of class matrices.
    let v_flat: Vec<T> = vecs.iter().flatten().cloned().collect();
    let shape = (vecs.len(), vecs[0].dim());
    let (v_mat, _) = modular_rref(&Array2::from_shape_vec(shape, v_flat).unwrap());
    let vs = v_mat
        .rows()
        .into_iter()
        .map(|v| v.to_owned())
        .collect::<Vec<_>>();
    let v0 = vs[0].clone();
    let v1 = vs[1].clone();

    let v00 = weighted_hermitian_inprod((&v0, &v0), class_sizes, perm_for_conj);
    let v11 = weighted_hermitian_inprod((&v1, &v1), class_sizes, perm_for_conj);
    let v01 = weighted_hermitian_inprod((&v0, &v1), class_sizes, perm_for_conj);
    let v10 = weighted_hermitian_inprod((&v1, &v0), class_sizes, perm_for_conj);
    let group_order = class_sizes.iter().sum::<usize>();
    let group_order_u32 = u32::try_from(group_order)
        .unwrap_or_else(|_| panic!("Unable to convert the group order {group_order} to `u32`."));
    let sqrt_group_order = group_order
        .to_f64()
        .expect("Unable to convert the group order to `f64`.")
        .sqrt()
        .floor()
        .to_u32()
        .expect("Unable to convert the square root of the group order to `u32`.");
    let one = rep.convert(1);
    let p = rep.modulus();
    let results = (1..=sqrt_group_order)
        .filter_map(|d0_u32| {
            if group_order.rem_euclid(usize::try_from(d0_u32).unwrap_or_else(|_| {
                panic!("Unable to convert the trial dimension {d0_u32} to `usize`.")
            })) != 0 {
                None
            } else {
                let res_a0 = (0..p).filter_map(|a0_u32| {
                    let a0 = rep.convert(a0_u32);
                    if Zero::is_zero(
                        &(a0 * (a0 * v11 + v01 + v10) + v00
                            - one / rep.convert(d0_u32).square()),
                    ) {
                        let denom = a0 * v11 + v10;
                        if Zero::is_zero(&denom) {
                            None
                        } else {
                            let a1 = -(v00 + a0 * v01) / denom;
                            let d1p2 = one / (a1 * (a1 * v11 + v01 + v10) + v00);
                            let res_d1 = (1..=sqrt_group_order).filter_map(|d1_u32| {
                                if group_order.rem_euclid(usize::try_from(d1_u32).unwrap_or_else(|_| {
                                    panic!("Unable to convert the trial dimension {d1_u32} to `usize`.")
                                })) == 0 && rep.convert(d1_u32).square() == d1p2 {

                                    let v0_split = Array1::from_vec(
                                        v0.iter()
                                            .zip(v1.iter())
                                            .map(|(&v0_x, &v1_x)| v0_x + a0 * v1_x)
                                            .collect_vec(),
                                    );
                                    let v1_split = Array1::from_vec(
                                        v0.iter()
                                            .zip(v1.iter())
                                            .map(|(&v0_x, &v1_x)| v0_x + a1 * v1_x)
                                            .collect_vec(),
                                    );

                                    let d0 = rep.convert(d0_u32);
                                    let d1 = rep.convert(d1_u32);
                                    let char0 = v0_split
                                        .iter()
                                        .zip(class_sizes.iter())
                                        .map(|(&x, &k)|
                                            d0 * x / rep.convert(k as u32)
                                        ).collect::<Vec<_>>();
                                    let char1 = v1_split
                                        .iter()
                                        .zip(class_sizes.iter())
                                        .map(|(&x, &k)|
                                            d1 * x / rep.convert(k as u32)
                                        ).collect::<Vec<_>>();

                                    // Frobenius--Schur indicator calculation in GF(p)
                                    let fs0 = sq_indices
                                        .iter()
                                        .zip(class_sizes.iter())
                                        .fold(T::zero(), |acc, (&sq_idx, &k)| {
                                            let k_u32 = u32::try_from(k).unwrap_or_else(|_| {
                                                panic!("Unable to convert the class size {k} to `u32`.");
                                            });
                                            acc + rep.convert(k_u32) * char0[sq_idx]
                                        }) / rep.convert(group_order_u32);
                                    let fs0_good = fs0.is_one() || Zero::is_zero(&fs0) || fs0 == rep.convert(p - 1);
                                    let fs1 = sq_indices
                                        .iter()
                                        .zip(class_sizes.iter())
                                        .fold(T::zero(), |acc, (&sq_idx, &k)| {
                                            let k_u32 = u32::try_from(k).unwrap_or_else(|_| {
                                                panic!("Unable to convert the class size {k} to `u32`.");
                                            });
                                            acc + rep.convert(k_u32) * char1[sq_idx]
                                        }) / rep.convert(group_order_u32);
                                    let fs1_good = fs1.is_one() || Zero::is_zero(&fs1) || fs1 == rep.convert(p - 1);

                                    if fs0_good && fs1_good && d0_u32 <= d1_u32 {
                                        Some((
                                            (v0_split, v1_split),
                                            (d0_u32, d1_u32),
                                        ))
                                    } else {
                                        None
                                    }
                                } else {
                                    None
                                }
                            }).collect_vec();
                            Some(res_d1)
                        }
                    } else {
                        None
                    }
                })
                .flatten()
                .collect_vec();
                Some(res_a0)
            }
        })
        .flatten()
        .collect_vec();

    if results.len() == 1 {
        // Unique solution found.
        log::debug!(
            "Greedy Schneider splitting algorithm for 2-D subspace found a unique solution."
        );
        let (v0_split, v1_split) = results[0].0.clone();
        Ok(vec![vec![v0_split], vec![v1_split]])
    } else {
        // Multiple solutions found. The algorithm has failed.
        log::debug!(
            "Greedy Schneider splitting algorithm for 2-D subspace found {} solutions.",
            results.len()
        );
        for (i, (_, (d0_u32, d1_u32))) in results.iter().enumerate() {
            log::debug!("Irrep dimensionalities of solution {i}: ({d0_u32}, {d1_u32})");
        }
        Err(Split2dSpaceError { vecs })
    }
}