1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
//! Modular linear algebra.
use std::collections::{HashMap, HashSet};
use std::error::Error;
use std::fmt::{self, Debug, Display};
use std::hash::Hash;
use std::ops::Div;
use std::panic;
use itertools::Itertools;
use log;
use ndarray::{s, Array1, Array2, Axis, LinalgScalar, ShapeBuilder, Zip};
use num_modular::ModularInteger;
use num_traits::{Inv, Pow, ToPrimitive, Zero};
use rayon::prelude::*;
use crate::auxiliary::misc::GramSchmidtError;
#[cfg(test)]
#[path = "modular_linalg_tests.rs"]
mod modular_linalg_tests;
/// Calculates the determinant of a square matrix over a finite integer field
/// using the Bereiss algorithm.
///
/// For more information, see
/// <https://stackoverflow.com/questions/66192894/precise-determinant-of-integer-nxn-matrix>.
///
/// # Arguments
///
/// * `mat` - A square matrix.
///
/// # Returns
///
/// The determinant of `mat` in the same field.
///
/// # Panics
///
/// Panics if `mat` is not a square matrix.
fn modular_determinant<T>(mat: &Array2<T>) -> T
where
T: Clone + LinalgScalar + ModularInteger<Base = u32> + Div<Output = T>,
{
assert_eq!(mat.ncols(), mat.nrows(), "A square matrix is expected.");
let mut mat = mat.clone();
let rep = mat
.first()
.expect("Unable to obtain the first element of `mat`.");
let dim = mat.ncols();
let mut sign = rep.convert(1u32);
let mut prev = rep.convert(1u32);
let zero = rep.convert(0u32);
for i in 0..(dim - 1) {
if mat[(i, i)] == zero {
// Swap with another row having non-zero i-th element.
let rel_swapto = mat.slice(s![(i + 1).., i]).iter().position(|x| *x != zero);
if let Some(rel_index) = rel_swapto {
let (mut mat_above, mut mat_below) = mat.view_mut().split_at(Axis(0), i + 1);
let row_from = mat_above.slice_mut(s![i, ..]);
let row_to = mat_below.slice_mut(s![rel_index, ..]);
Zip::from(row_from).and(row_to).for_each(std::mem::swap);
sign = -sign;
} else {
// All mat[.., i] are zero => zero determinant.
return zero;
}
}
for (j, k) in ((i + 1)..dim).cartesian_product((i + 1)..dim) {
let numerator = mat[(j, k)] * mat[(i, i)] - mat[(j, i)] * mat[(i, k)];
mat[(j, k)] = numerator / prev;
}
prev = mat[(i, i)];
}
sign * *mat
.last()
.expect("Unable to obtain the last element of `mat`.")
}
/// Converts an array into its unique reduced row echelon form using Gaussian
/// elimination over a finite integer field.
///
/// # Arguments
///
/// * `mat` - A rectangular matrix.
///
/// # Returns
///
/// * The reduced row echelon form of `mat`.
/// * The nullity of `mat`.
///
/// # Panics
///
/// Panics when the pivoting values are not unity.
fn modular_rref<T>(mat: &Array2<T>) -> (Array2<T>, usize)
where
T: Clone + Copy + Debug + ModularInteger<Base = u32> + Div<Output = T>,
{
let mut mat = mat.clone();
let nrows = mat.nrows();
let ncols = mat.ncols();
let rep = mat
.first()
.expect("Unable to obtain the first element in `mat`.");
let zero = rep.convert(0);
let one = rep.convert(1);
let mut rank = 0usize;
let mut pivot_row = 0usize;
let mut pivot_col = 0usize;
while pivot_row < nrows && pivot_col < ncols {
// Find the pivot in column pivot_col
let rel_i_nonzero_option = mat
.slice(s![pivot_row.., pivot_col])
.iter()
.position(|x| *x != zero);
if let Some(rel_i_nonzero) = rel_i_nonzero_option {
if rel_i_nonzero > 0 {
// Possible pivot in this column at row (pivot_row + rel_i_nonzero)
// Swap row pivot_row with row (pivot_row + rel_i_nonzero)
let (mut mat_above, mut mat_below) =
mat.view_mut().split_at(Axis(0), pivot_row + 1);
let row_from = mat_above.slice_mut(s![pivot_row, ..]);
let row_to = mat_below.slice_mut(s![rel_i_nonzero - 1, ..]);
Zip::from(row_from).and(row_to).for_each(std::mem::swap);
}
// Scale all elements in pivot row to make the pivot element equal to one
let pivot_val = mat[(pivot_row, pivot_col)];
for j in (pivot_col)..ncols {
mat[(pivot_row, j)] = mat[(pivot_row, j)] / pivot_val;
}
// Eliminate below the pivot
for i in (pivot_row + 1)..nrows {
assert_eq!(mat[(pivot_row, pivot_col)], one);
let f = mat[(i, pivot_col)];
// row_i -= f * pivot_row
// Fill with zeros the lower part of pivot column
// This is essentially a subtraction but has been optimised away.
mat[(i, pivot_col)] = zero;
// Subtract all remaining elements in current row
for j in (pivot_col + 1)..ncols {
let a = mat[(pivot_row, j)];
mat[(i, j)] = mat[(i, j)] - a * f;
}
}
// Eliminate above the pivot
for i in (0..pivot_row).rev() {
assert_eq!(mat[(pivot_row, pivot_col)], one);
let f = mat[(i, pivot_col)];
// row_i -= f * pivot_row
// Fill with zeros the upper part of pivot column
mat[(i, pivot_col)] = zero;
// Subtract all remaining elements in current row
for j in (pivot_col + 1)..ncols {
let a = mat[(pivot_row, j)];
mat[(i, j)] = mat[(i, j)] - a * f;
}
}
// Increase pivot row and column for the next while iteration
pivot_row += 1;
pivot_col += 1;
// Pivot column increases rank.
rank += 1;
} else {
// No pivot in this column; pass to next column.
pivot_col += 1;
}
}
(mat, ncols - rank)
}
/// Determines a set of basis vectors for the kernel of a matrix via Gaussian
/// elimination over a finite integer field.
///
/// The kernel of an $`m \times n`$ matrix $`\mathbf{M}`$ is the space of
/// the solutions to the equation
///
/// ```math
/// \mathbf{M} \mathbf{x} = \mathbf{0},
/// ```
///
/// where $`\mathbf{x}`$ is an $`n \times 1`$ column vector.
///
/// # Arguments
///
/// * `mat` - A rectangular matrix.
///
/// # Returns
///
/// A vector of basis vectors for the kernel of `mat`.
fn modular_kernel<T>(mat: &Array2<T>) -> Vec<Array1<T>>
where
T: Clone + Copy + Debug + ModularInteger<Base = u32> + Div<Output = T>,
{
let (mat_rref, nullity) = modular_rref(mat);
let ncols = mat.ncols();
let rep = mat
.first()
.expect("Unable to obtain the first element in `mat`.");
let zero = rep.convert(0);
let one = rep.convert(1);
let pivot_cols: Vec<usize> = mat_rref
.axis_iter(Axis(0))
.filter_map(|row| row.iter().position(|&x| x != zero))
.collect();
let rank = ncols - nullity;
assert_eq!(rank, pivot_cols.len());
log::debug!("Rank: {}", rank);
log::debug!("Kernel dim: {}", nullity);
let pivot_cols_set: HashSet<usize> = pivot_cols.iter().copied().collect::<HashSet<_>>();
let non_pivot_cols = (0..ncols).collect::<HashSet<_>>();
let non_pivot_cols = non_pivot_cols.difference(&pivot_cols_set);
non_pivot_cols
.map(|&non_pivot_col| {
let mut kernel_basis_vec = Array1::from_elem((ncols,), zero);
kernel_basis_vec[non_pivot_col] = one;
for (i, &pivot_col) in pivot_cols.iter().enumerate() {
kernel_basis_vec[pivot_col] = -mat_rref[(i, non_pivot_col)];
}
let first_nonzero_pos = kernel_basis_vec
.iter()
.position(|&x| x != zero)
.expect("Kernel basis vector cannot be zero.");
let first_nonzero = kernel_basis_vec[first_nonzero_pos];
kernel_basis_vec
.iter_mut()
.for_each(|x| *x = *x / first_nonzero);
kernel_basis_vec
})
.collect()
}
#[derive(Debug, Clone)]
pub(crate) struct ModularEigError<'a, T> {
mat: &'a Array2<T>,
}
impl<'a, T: Display + Debug> fmt::Display for ModularEigError<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Unable to diagonalise {}.", self.mat)
}
}
impl<'a, T: Display + Debug> Error for ModularEigError<'a, T> {}
/// Determines the eigenvalues and eigenvector of a square matrix over a finite
/// integer field.
///
/// # Arguments
///
/// * `mat` - A square matrix of modular integers.
///
/// # Returns
///
/// A hashmap containing the eigenvalues and the associated eigenvectors.
/// One eigenvalue can be associated with multiple eigenvectors in cases of
/// degeneracy.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between matrix elements are encountered.
pub(crate) fn modular_eig<T>(
mat: &Array2<T>,
) -> Result<HashMap<T, Vec<Array1<T>>>, ModularEigError<'_, T>>
where
T: Clone
+ LinalgScalar
+ Display
+ Debug
+ ModularInteger<Base = u32>
+ Eq
+ Hash
+ panic::UnwindSafe
+ panic::RefUnwindSafe
+ Sync
+ Send,
{
assert!(mat.is_square(), "Only square matrices are supported.");
let dim = mat.nrows();
let modulus_set: HashSet<u32> = mat
.iter()
.filter_map(|x| panic::catch_unwind(|| x.modulus()).ok())
.collect();
assert_eq!(
modulus_set.len(),
1,
"Inconsistent ring moduli between matrix elements."
);
let modulus = *modulus_set
.iter()
.next()
.expect("Unexpected empty `modulus_set`.");
let rep = mat
.iter()
.find(|x| panic::catch_unwind(|| x.modulus()).is_ok())
.expect("At least one modular integer with a known modulus should have been found.");
let zero = T::zero();
log::debug!("Diagonalising in GF({})...", modulus);
let results: HashMap<T, Vec<Array1<T>>> = (0..modulus)
.par_bridge()
.filter_map(|lam| {
let lamb = rep.convert(lam);
let char_mat = mat - Array2::from_diag_elem(dim, lamb);
let det = modular_determinant(&char_mat);
if det == zero {
let vecs = modular_kernel(&char_mat);
log::debug!(
"{} is an eigenvalue with multiplicity {}.",
lamb,
vecs.len()
);
Some((lamb, vecs))
} else {
None
}
})
.collect();
let eigen_dim = results.values().fold(0usize, |acc, vecs| acc + vecs.len());
if eigen_dim != dim {
log::warn!(
"Found {} / {} eigenvector{}. The matrix is not diagonalisable in GF({}).",
eigen_dim,
dim,
if dim > 1 { "s" } else { "" },
modulus
);
Err(ModularEigError { mat })
} else {
log::debug!(
"Found {} / {} eigenvector{}. Eigensolver done in GF({}).",
eigen_dim,
dim,
if dim > 1 { "s" } else { "" },
modulus
);
Ok(results)
}
}
/// Calculates the weighted Hermitian inner product between two vectors defined
/// as:
///
/// ```math
/// \langle \mathbf{u}, \mathbf{w} \rangle
/// = \lvert G \rvert^{-1} \sum_i
/// \frac{u_i \bar{w}_i}{\lvert K_i \rvert},
/// ```
///
/// where $`K_i`$ is the i-th conjugacy class of the group, and
/// $`\bar{w_i}`$ the character in $`\mathbf{w}`$ corresponding to the
/// inverse conjugacy class of $`K_i`$.
///
/// Note that, in $`\mathbb{C}`$, $`\bar{w}_i = w_i^*`$, but this is not true
/// in $`\mathrm{GF}(p)`$.
///
/// # Arguments
///
/// * `vec_pair` - A pair of vectors for which the Hermitian inner product is to be
/// calculated.
/// * `class_sizes` - The sizes of the conjugacy classes.
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate.
///
/// # Returns
/// The weighted Hermitian inner product.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between vector elements are encountered.
#[must_use]
pub(crate) fn weighted_hermitian_inprod<T>(
vec_pair: (&Array1<T>, &Array1<T>),
class_sizes: &[usize],
perm_for_conj: Option<&Vec<usize>>,
) -> T
where
T: Display
+ Debug
+ LinalgScalar
+ ModularInteger<Base = u32>
+ panic::UnwindSafe
+ panic::RefUnwindSafe,
{
let (vec_u, vec_w) = vec_pair;
assert_eq!(vec_u.len(), vec_w.len());
assert_eq!(vec_u.len(), class_sizes.len());
let modulus_set: HashSet<u32> = vec_u
.iter()
.chain(vec_w.iter())
.filter_map(|x| panic::catch_unwind(|| x.modulus()).ok())
.collect();
assert_eq!(
modulus_set.len(),
1,
"Inconsistent ring moduli between vector elements."
);
let rep = vec_u
.iter()
.chain(vec_w.iter())
.find(|x| panic::catch_unwind(|| x.modulus()).is_ok())
.expect("No known modulus found.");
let vec_w_conj = if let Some(indices) = perm_for_conj {
vec_w.select(Axis(0), indices)
} else {
vec_w.clone()
};
Zip::from(vec_u)
.and(&vec_w_conj)
.and(class_sizes)
.fold(T::zero(), |acc, &u, &w_conj, &k| {
acc + (u * w_conj)
/ rep.convert(
u32::try_from(k)
.unwrap_or_else(|_| panic!("Unable to convert `{k}` to `u32`.")),
)
})
/ rep.convert(
u32::try_from(class_sizes.iter().sum::<usize>())
.expect("Unable to convert the group order to `u32`."),
)
}
/// Performs Gram--Schmidt orthogonalisation (but not normalisation) on a set of vectors with
/// respect to the inner product defined in [`self::weighted_hermitian_inprod`].
///
/// # Arguments
///
/// * `vs` - Vectors forming a basis for a subspace.
/// * `class_sizes` - Sizes for the conjugacy classes. This is required to compute the inner
/// product.
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate. This is
/// required to compute the inner product.
///
/// # Returns
///
/// The orthogonal vectors forming a basis for the same subspace.
///
/// # Errors
///
/// Errors when the orthogonalisation procedure fails, which occurs when there is linear dependency
/// between the basis vectors.
fn modular_gram_schmidt<'a, T>(
vs: &'a [Array1<T>],
class_sizes: &[usize],
perm_for_conj: Option<&Vec<usize>>,
) -> Result<Vec<Array1<T>>, GramSchmidtError<'a, T>>
where
T: Display
+ Debug
+ LinalgScalar
+ ModularInteger<Base = u32>
+ panic::UnwindSafe
+ panic::RefUnwindSafe,
{
let mut us: Vec<Array1<T>> = Vec::with_capacity(vs.len());
let mut us_sq_norm: Vec<T> = Vec::with_capacity(vs.len());
for (i, vi) in vs.iter().enumerate() {
// u[i] now initialised with v[i]
us.push(vi.clone());
// Project vi onto all uj (0 <= j < i)
for j in 0..i {
if Zero::is_zero(&us_sq_norm[j]) {
log::error!("A zero-norm vector found: {}", us[j]);
return Err(GramSchmidtError {
vecs: Some(vs),
mat: None,
});
}
let p_uj_vi =
weighted_hermitian_inprod((vi, &us[j]), class_sizes, perm_for_conj) / us_sq_norm[j];
us[i] = &us[i] - us[j].map(|&x| x * p_uj_vi);
}
// Evaluate the squared norm of ui which will no longer be changed after this iteration.
// us_sq_norm[i] now available.
us_sq_norm.push(weighted_hermitian_inprod(
(&us[i], &us[i]),
class_sizes,
perm_for_conj,
));
}
debug_assert!({
us.iter().enumerate().all(|(i, ui)| {
us.iter().enumerate().all(|(j, uj)| {
let ov_ij = weighted_hermitian_inprod((ui, uj), class_sizes, perm_for_conj);
i == j || Zero::is_zero(&ov_ij)
})
})
});
Ok(us)
}
#[derive(Debug, Clone)]
pub(crate) struct SplitSpaceError<'a, T> {
mat: &'a Array2<T>,
vecs: &'a [Array1<T>],
}
impl<'a, T: Display + Debug> fmt::Display for SplitSpaceError<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"Unable to split the degenerate subspace spanned by {:#?} with {}.",
self.vecs, self.mat
)
}
}
impl<'a, T: Display + Debug> Error for SplitSpaceError<'a, T> {}
/// Splits a space into smaller subspaces under the action of a matrix.
///
/// # Arguments
///
/// * `mat` - A matrix to act on the specified space.
/// * `vecs` - The basis vectors specifying the space.
/// * `class_sizes` - Sizes for the conjugacy classes. This is required to compute the inner
/// product defined in [`self::weighted_hermitian_inprod`].
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate. This is
/// required to compute the inner product defined in [`self::weighted_hermitian_inprod`].
///
/// # Returns
///
/// A vector of vectors of vectors, where each inner vector contains the basis
/// vectors for an $`n`$-dimensional subspace, $`n \ge 1`$.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between vector and matrix elements are found.
///
/// # Errors
///
/// Errors when the degeneracy subspace cannot be split, which occurs when any of the
/// orthogonalised vectors spanning the subspace is a null vector.
#[allow(clippy::too_many_lines)]
pub(crate) fn split_space<'a, T>(
mat: &'a Array2<T>,
vecs: &'a [Array1<T>],
class_sizes: &[usize],
perm_for_conj: Option<&Vec<usize>>,
) -> Result<Vec<Vec<Array1<T>>>, SplitSpaceError<'a, T>>
where
T: Display
+ LinalgScalar
+ Debug
+ ModularInteger<Base = u32>
+ Eq
+ Hash
+ Zero
+ Inv
+ panic::UnwindSafe
+ panic::RefUnwindSafe
+ Sync
+ Send,
{
let modulus_set: HashSet<u32> = vecs
.iter()
.flatten()
.chain(mat.iter())
.filter_map(|x| panic::catch_unwind(|| x.modulus()).ok())
.collect();
assert_eq!(
modulus_set.len(),
1,
"Inconsistent ring moduli between vector and matrix elements."
);
let dim = vecs.len();
log::debug!("Dimensionality of space to be split: {}", dim);
let split_subspaces = if dim <= 1 {
log::debug!("Nothing to do.");
vec![Vec::from(vecs)]
} else {
// Orthogonalise the subspace basis
let ortho_vecs = modular_gram_schmidt(vecs, class_sizes, perm_for_conj).map_err(|err| {
log::warn!("{err}");
SplitSpaceError { mat, vecs }
})?;
let ortho_vecs_mat = Array2::from_shape_vec(
(class_sizes.len(), dim).f(),
ortho_vecs.iter().flatten().copied().collect::<Vec<_>>(),
)
.expect("Unable to construct a two-dimensional matrix of the orthogonal vectors.");
// Find the representation matrix of the action of `mat` on the basis vectors
let ortho_vecs_mag = Array2::from_shape_vec(
(dim, 1),
ortho_vecs
.iter()
.map(|col_i| weighted_hermitian_inprod((col_i, col_i), class_sizes, perm_for_conj))
.collect(),
)
.expect(
"Unable to construct a column vector of the magnitudes of the orthogonalised vectors.",
);
if ortho_vecs_mag.iter().any(|x| Zero::is_zero(x)) {
return Err(SplitSpaceError { mat, vecs });
}
// The division below is correct: `ortho_vecs_mag` (dim × 1) is broadcast to (dim × dim),
// hence every row of the dividend is divided by the corresponding element of
// `ortho_vecs_mag`.
let nv_mat = mat.dot(&ortho_vecs_mat);
let mut rep_mat_unnorm: Array2<T> = Array2::zeros((dim, dim));
for (i, v) in ortho_vecs.iter().enumerate() {
for (j, nv) in nv_mat.columns().into_iter().enumerate() {
rep_mat_unnorm[[i, j]] =
weighted_hermitian_inprod((v, &nv.to_owned()), class_sizes, perm_for_conj);
}
}
let rep_mat = rep_mat_unnorm / ortho_vecs_mag;
// Diagonalise the representation matrix
// Then use the eigenvectors to form linear combinations of the original
// basis vectors and split the subspace
let eigs = modular_eig(&rep_mat).map_err(|_| SplitSpaceError { mat, vecs })?;
let n_subspaces = eigs.len();
if n_subspaces == dim {
log::debug!("{dim}-D space is completely split into {n_subspaces} 1-D subspaces.",);
} else {
log::debug!(
"{dim}-D space is incompletely split into {n_subspaces} subspace{}.",
if n_subspaces == 1 { "" } else { "s" }
);
}
// Each eigenvalue of the representation matrix corresponds to one sub-subspace.
eigs.iter().fold(vec![], |mut acc, (eigval, eigvecs)| {
log::debug!(
"Handling eigenvalue {} of the representation matrix...",
eigval
);
acc.push(
eigvecs
.iter()
.map(|vec| {
// Form linear combinations of the original basis vectors
let transformed_vec = ortho_vecs_mat.dot(vec);
// Normalise so that the first non-zero element is one
let first_non_zero = transformed_vec
.iter()
.find(|&x| !Zero::is_zero(x))
.expect("Unexpected zero eigenvector.");
Array1::from_vec(
transformed_vec
.iter()
.map(|x| *x / *first_non_zero)
.collect(),
)
})
.collect::<Vec<_>>(),
);
acc
})
};
Ok(split_subspaces)
}
#[derive(Debug, Clone)]
pub(crate) struct Split2dSpaceError<'a, T> {
vecs: &'a [Array1<T>],
}
impl<'a, T: Display + Debug> fmt::Display for Split2dSpaceError<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
writeln!(
f,
"Unable to greedily split the two-dimensional degenerate subspace spanned by",
)?;
for vec in self.vecs {
writeln!(f, " {vec}")?;
}
fmt::Result::Ok(())
}
}
impl<'a, T: Display + Debug> Error for Split2dSpaceError<'a, T> {}
/// Splits a two-dimensional space using the trial-and-error approach suggested by
/// Schneider, G. J. A. Dixon's character table algorithm revisited.
/// *Journal of Symbolic Computation* **9**, 601–606 (1990),
/// [DOI](https://doi.org/10.1016/S0747-7171(08)80077-6).
///
/// In cases of ambiguity, the Frobenius--Schur indicators of the prospective irreps are computed
/// to help rule out invalid cases.
///
/// # Arguments
///
/// * `vecs` - The two basis vectors specifying the space.
/// * `class_sizes` - Sizes for the conjugacy classes. This is required to compute the inner
/// product defined in [`self::weighted_hermitian_inprod`].
/// * `perm_for_conj` - The permutation indices to take a vector into its conjugate. This is
/// required to compute the inner product defined in [`self::weighted_hermitian_inprod`].
///
/// # Returns
///
/// A vector of two vectors of vectors, where each inner vector contains the basis
/// vectors for a one-dimensional subspace.
///
/// # Panics
///
/// Panics when inconsistent ring moduli between vector and matrix elements are found.
///
/// # Errors
///
/// Errors when the two-dimensional subspace cannot be split using this approach. This occurs when
/// the Frobenius--Schur indicators fail to rule out all prospective cases.
pub(crate) fn split_2d_space<'a, T>(
vecs: &'a [Array1<T>],
class_sizes: &[usize],
sq_indices: &[usize],
perm_for_conj: Option<&Vec<usize>>,
) -> Result<Vec<Vec<Array1<T>>>, Split2dSpaceError<'a, T>>
where
T: Display
+ LinalgScalar
+ Debug
+ ModularInteger<Base = u32>
+ Eq
+ Hash
+ Zero
+ Inv
+ Pow<u32, Output = T>
+ panic::UnwindSafe
+ panic::RefUnwindSafe,
{
assert_eq!(vecs.len(), 2, "Only two-dimensional spaces are allowed.");
let rep = vecs
.iter()
.flatten()
.find(|x| panic::catch_unwind(|| x.modulus()).is_ok())
.expect("No known modulus found.");
// Echelonise the basis so that v0 has first entry of 1, while v1 has first entry of 0.
// This then ensures that v0 + ai*v1 (i = 0, 1) always has first entry of 1, thus satisfying
// the requirement for 'normalised' eigenvectors of class matrices.
let v_flat: Vec<T> = vecs.iter().flatten().cloned().collect();
let shape = (vecs.len(), vecs[0].dim());
let (v_mat, _) = modular_rref(&Array2::from_shape_vec(shape, v_flat).unwrap());
let vs = v_mat
.rows()
.into_iter()
.map(|v| v.to_owned())
.collect::<Vec<_>>();
let v0 = vs[0].clone();
let v1 = vs[1].clone();
let v00 = weighted_hermitian_inprod((&v0, &v0), class_sizes, perm_for_conj);
let v11 = weighted_hermitian_inprod((&v1, &v1), class_sizes, perm_for_conj);
let v01 = weighted_hermitian_inprod((&v0, &v1), class_sizes, perm_for_conj);
let v10 = weighted_hermitian_inprod((&v1, &v0), class_sizes, perm_for_conj);
let group_order = class_sizes.iter().sum::<usize>();
let group_order_u32 = u32::try_from(group_order)
.unwrap_or_else(|_| panic!("Unable to convert the group order {group_order} to `u32`."));
let sqrt_group_order = group_order
.to_f64()
.expect("Unable to convert the group order to `f64`.")
.sqrt()
.floor()
.to_u32()
.expect("Unable to convert the square root of the group order to `u32`.");
let one = rep.convert(1);
let p = rep.modulus();
let results = (1..=sqrt_group_order)
.filter_map(|d0_u32| {
if group_order.rem_euclid(usize::try_from(d0_u32).unwrap_or_else(|_| {
panic!("Unable to convert the trial dimension {d0_u32} to `usize`.")
})) != 0 {
None
} else {
let res_a0 = (0..p).filter_map(|a0_u32| {
let a0 = rep.convert(a0_u32);
if Zero::is_zero(
&(a0 * (a0 * v11 + v01 + v10) + v00
- one / rep.convert(d0_u32).square()),
) {
let denom = a0 * v11 + v10;
if Zero::is_zero(&denom) {
None
} else {
let a1 = -(v00 + a0 * v01) / denom;
let d1p2 = one / (a1 * (a1 * v11 + v01 + v10) + v00);
let res_d1 = (1..=sqrt_group_order).filter_map(|d1_u32| {
if group_order.rem_euclid(usize::try_from(d1_u32).unwrap_or_else(|_| {
panic!("Unable to convert the trial dimension {d1_u32} to `usize`.")
})) == 0 && rep.convert(d1_u32).square() == d1p2 {
let v0_split = Array1::from_vec(
v0.iter()
.zip(v1.iter())
.map(|(&v0_x, &v1_x)| v0_x + a0 * v1_x)
.collect_vec(),
);
let v1_split = Array1::from_vec(
v0.iter()
.zip(v1.iter())
.map(|(&v0_x, &v1_x)| v0_x + a1 * v1_x)
.collect_vec(),
);
let d0 = rep.convert(d0_u32);
let d1 = rep.convert(d1_u32);
let char0 = v0_split
.iter()
.zip(class_sizes.iter())
.map(|(&x, &k)|
d0 * x / rep.convert(k as u32)
).collect::<Vec<_>>();
let char1 = v1_split
.iter()
.zip(class_sizes.iter())
.map(|(&x, &k)|
d1 * x / rep.convert(k as u32)
).collect::<Vec<_>>();
// Frobenius--Schur indicator calculation in GF(p)
let fs0 = sq_indices
.iter()
.zip(class_sizes.iter())
.fold(T::zero(), |acc, (&sq_idx, &k)| {
let k_u32 = u32::try_from(k).unwrap_or_else(|_| {
panic!("Unable to convert the class size {k} to `u32`.");
});
acc + rep.convert(k_u32) * char0[sq_idx]
}) / rep.convert(group_order_u32);
let fs0_good = fs0.is_one() || Zero::is_zero(&fs0) || fs0 == rep.convert(p - 1);
let fs1 = sq_indices
.iter()
.zip(class_sizes.iter())
.fold(T::zero(), |acc, (&sq_idx, &k)| {
let k_u32 = u32::try_from(k).unwrap_or_else(|_| {
panic!("Unable to convert the class size {k} to `u32`.");
});
acc + rep.convert(k_u32) * char1[sq_idx]
}) / rep.convert(group_order_u32);
let fs1_good = fs1.is_one() || Zero::is_zero(&fs1) || fs1 == rep.convert(p - 1);
if fs0_good && fs1_good && d0_u32 <= d1_u32 {
Some((
(v0_split, v1_split),
(d0_u32, d1_u32),
))
} else {
None
}
} else {
None
}
}).collect_vec();
Some(res_d1)
}
} else {
None
}
})
.flatten()
.collect_vec();
Some(res_a0)
}
})
.flatten()
.collect_vec();
if results.len() == 1 {
// Unique solution found.
log::debug!(
"Greedy Schneider splitting algorithm for 2-D subspace found a unique solution."
);
let (v0_split, v1_split) = results[0].0.clone();
Ok(vec![vec![v0_split], vec![v1_split]])
} else {
// Multiple solutions found. The algorithm has failed.
log::debug!(
"Greedy Schneider splitting algorithm for 2-D subspace found {} solutions.",
results.len()
);
for (i, (_, (d0_u32, d1_u32))) in results.iter().enumerate() {
log::debug!("Irrep dimensionalities of solution {i}: ({d0_u32}, {d1_u32})");
}
Err(Split2dSpaceError { vecs })
}
}