1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
//! Driver for molecule symmetrisation by bootstrapping in QSym².
//!
//! This algorithm symmetrises a molecule iteratively by defining two threshold levels: a `loose`
//! level and a `target` level.
//!
//! In every iteration, the following steps are performed:
//!
//! 1. The molecule is symmetry-analysed at the `target` level; any symmetry elements found are stashed and the symmetry group name, if any, is registered.
//! 2. The molecule is symmetry-analysed at the `loose` level; any symmetry elements found are added to the stash and the symmetry group name, if any, is registered.
//! 3. The convergence criteria (see below) are checked.
//! - If convergence has been reached, the symmetrisation procedure is terminated.
//! - If convergence has not been reached, the following steps are carried out.
//! 4. All symmetry elements found in the stash are used to generate all possible symmetry operations which are then used to symmetrise the molecule: each symmetry operation is applied on the original molecule to produce a symmetry-equivalent copy, then all symmetry-equivalent copies are averaged to give the symmetrised molecule.
//! 5. Repeat steps 1 to 4 above until convergence is reached.
//!
//! There are two convergence criteria for the symmetrisation procedure:
//! - **either** when the loose-threshold symmetry agrees with the target-threshold symmetry,
//! - **or** when the target-threshold symmetry contains more elements than the loose-threshold symmetry and has been consistently identified for a pre-specified number of consecutive iterations.
//!
//! At least one criterion must be satisfied in order for convergence to be reached.
use std::fmt;
use std::path::PathBuf;
use anyhow::{ensure, format_err};
use derive_builder::Builder;
use itertools::Itertools;
use nalgebra::Point3;
use ndarray::{Array2, Axis};
use num_traits::ToPrimitive;
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use crate::auxiliary::geometry::Transform;
use crate::auxiliary::molecule::Molecule;
use crate::drivers::symmetry_group_detection::{
SymmetryGroupDetectionDriver, SymmetryGroupDetectionParams,
};
use crate::drivers::QSym2Driver;
use crate::io::format::{
log_subtitle, log_title, nice_bool, qsym2_output, QSym2Output,
};
use crate::io::QSym2FileType;
use crate::permutation::IntoPermutation;
use crate::symmetry::symmetry_core::{PreSymmetry, Symmetry};
#[cfg(test)]
#[path = "molecule_symmetrisation_bootstrap_tests.rs"]
mod molecule_symmetrisation_bootstrap_tests;
// ==================
// Struct definitions
// ==================
// ----------
// Parameters
// ----------
fn default_true() -> bool {
true
}
fn default_max_iterations() -> usize {
50
}
fn default_consistent_iterations() -> usize {
10
}
fn default_loose_threshold() -> f64 {
1e-2
}
fn default_tight_threshold() -> f64 {
1e-7
}
/// Structure containing control parameters for molecule symmetrisation by bootstrapping.
#[derive(Clone, Builder, Debug, Serialize, Deserialize)]
pub struct MoleculeSymmetrisationBootstrapParams {
/// Boolean indicating if the molecule is also reoriented to align its principal axes with the
/// space-fixed Cartesian axes at every iteration.
///
/// See [`Molecule::reorientate`] for more information.
#[builder(default = "true")]
#[serde(default = "default_true")]
pub reorientate_molecule: bool,
/// The `loose` moment-of-inertia threshold for the symmetrisation. The symmetry elements found
/// at this threshold level will be used to bootstrap the symmetry of the molecule.
#[builder(default = "1e-2")]
#[serde(default = "default_loose_threshold")]
pub loose_moi_threshold: f64,
/// The `loose` distance threshold for the symmetrisation. The symmetry elements found at this
/// threshold level will be used to bootstrap the symmetry of the molecule.
#[builder(default = "1e-2")]
#[serde(default = "default_loose_threshold")]
pub loose_distance_threshold: f64,
/// The `target` moment-of-inertia threshold for the symmetrisation.
#[builder(default = "1e-7")]
#[serde(default = "default_tight_threshold")]
pub target_moi_threshold: f64,
/// The `target` distance threshold for the symmetrisation.
#[builder(default = "1e-7")]
#[serde(default = "default_tight_threshold")]
pub target_distance_threshold: f64,
/// The maximum number of symmetrisation iterations.
#[builder(default = "50")]
#[serde(default = "default_max_iterations")]
pub max_iterations: usize,
/// The number of consecutive iterations during which the symmetry group at the `target` level
/// of threshold must be consistently found for convergence to be reached, *if this group
/// cannot become identical to the symmetry group at the `loose` level of threshold*.
#[builder(default = "10")]
#[serde(default = "default_consistent_iterations")]
pub consistent_target_symmetry_iterations: usize,
/// The finite order to which any infinite-order symmetry element is reduced, so that a finite
/// number of symmetry operations can be used for the symmetrisation.
#[builder(default = "None")]
#[serde(default)]
pub infinite_order_to_finite: Option<u32>,
/// Boolean indicating if any available magnetic group should be used for symmetrisation instead
/// of the unitary group.
#[builder(default = "false")]
#[serde(default)]
pub use_magnetic_group: bool,
/// The output verbosity level.
#[builder(default = "0")]
#[serde(default)]
pub verbose: u8,
/// Optional name (without the `.xyz` extension) for writing the symmetrised molecule to an XYZ
/// file. If `None`, no XYZ files will be written.
#[builder(default = "None")]
#[serde(default)]
pub symmetrised_result_xyz: Option<PathBuf>,
/// Optional name for saving the symmetry-group detection verification result of the symmetrised
/// system as a binary file of type [`QSym2FileType::Sym`]. If `None`, the result will not be
/// saved.
#[builder(default = "None")]
#[serde(default)]
pub symmetrised_result_save_name: Option<PathBuf>,
}
impl MoleculeSymmetrisationBootstrapParams {
/// Returns a builder to construct a [`MoleculeSymmetrisationBootstrapParams`] structure.
pub fn builder() -> MoleculeSymmetrisationBootstrapParamsBuilder {
MoleculeSymmetrisationBootstrapParamsBuilder::default()
}
}
impl Default for MoleculeSymmetrisationBootstrapParams {
fn default() -> Self {
Self::builder()
.build()
.expect("Unable to construct a default `MoleculeSymmetrisationBootstrapParams`.")
}
}
impl fmt::Display for MoleculeSymmetrisationBootstrapParams {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "Loose MoI threshold: {:.3e}", self.loose_moi_threshold)?;
writeln!(
f,
"Loose geo threshold: {:.3e}",
self.loose_distance_threshold
)?;
writeln!(f, "Target MoI threshold: {:.3e}", self.target_moi_threshold)?;
writeln!(
f,
"Target geo threshold: {:.3e}",
self.target_distance_threshold
)?;
writeln!(f)?;
writeln!(
f,
"Group used for symmetrisation: {}",
if self.use_magnetic_group {
"magnetic group"
} else {
"unitary group"
}
)?;
if let Some(finite_order) = self.infinite_order_to_finite {
writeln!(f, "Infinite order to finite: {finite_order}")?;
}
writeln!(
f,
"Maximum symmetrisation iterations: {}",
self.max_iterations
)?;
writeln!(
f,
"Target symmetry consistent iterations: {}",
self.consistent_target_symmetry_iterations
)?;
writeln!(f, "Output level: {}", self.verbose)?;
writeln!(
f,
"Save symmetrised molecule to XYZ file: {}",
if let Some(name) = self.symmetrised_result_xyz.as_ref() {
let mut path = name.clone();
path.set_extension("xyz");
path.display().to_string()
} else {
nice_bool(false)
}
)?;
writeln!(
f,
"Save symmetry-group detection results of symmetrised system to file: {}",
if let Some(name) = self.symmetrised_result_save_name.as_ref() {
let mut path = name.clone();
path.set_extension(QSym2FileType::Sym.ext());
path.display().to_string()
} else {
nice_bool(false)
}
)?;
writeln!(f)?;
Ok(())
}
}
// ------
// Result
// ------
/// Structure to contain molecule symmetrisation by bootstrapping results.
#[derive(Clone, Builder, Debug)]
pub struct MoleculeSymmetrisationBootstrapResult<'a> {
/// The control parameters used to obtain this set of molecule symmetrisation results.
parameters: &'a MoleculeSymmetrisationBootstrapParams,
/// The symmetrised molecule.
pub symmetrised_molecule: Molecule,
}
impl<'a> MoleculeSymmetrisationBootstrapResult<'a> {
fn builder() -> MoleculeSymmetrisationBootstrapResultBuilder<'a> {
MoleculeSymmetrisationBootstrapResultBuilder::default()
}
}
// ------
// Driver
// ------
/// Driver for molecule symmetrisation by bootstrapping in QSym².
#[derive(Clone, Builder)]
#[builder(build_fn(validate = "Self::validate"))]
pub struct MoleculeSymmetrisationBootstrapDriver<'a> {
/// The control parameters for molecule symmetrisation by bootstrapping.
parameters: &'a MoleculeSymmetrisationBootstrapParams,
/// The molecule to be symmetrised.
molecule: &'a Molecule,
/// The result of the symmetrisation.
#[builder(setter(skip), default = "None")]
result: Option<MoleculeSymmetrisationBootstrapResult<'a>>,
}
impl<'a> MoleculeSymmetrisationBootstrapDriverBuilder<'a> {
fn validate(&self) -> Result<(), String> {
let params = self
.parameters
.ok_or("No molecule symmetrisation parameters found.".to_string())?;
if params.consistent_target_symmetry_iterations > params.max_iterations {
return Err(format!(
"The number of consistent target-symmetry iterations, `{}`, cannot exceed the \
maximum number of iterations, `{}`.",
params.consistent_target_symmetry_iterations, params.max_iterations,
));
}
if params.target_moi_threshold < 0.0
|| params.loose_moi_threshold < 0.0
|| params.target_distance_threshold < 0.0
|| params.loose_distance_threshold < 0.0
{
return Err("The thresholds cannot be negative.".to_string());
}
if params.target_moi_threshold > params.loose_moi_threshold {
return Err(format!(
"The target MoI threshold, `{:.3e}`, cannot be larger than the \
loose MoI threshold, `{:.3e}`.",
params.target_moi_threshold, params.loose_moi_threshold
));
}
if params.target_distance_threshold > params.loose_distance_threshold {
return Err(format!(
"The target distance threshold, `{:.3e}`, cannot be larger than the \
loose distance threshold, `{:.3e}`.",
params.target_distance_threshold, params.loose_distance_threshold
));
}
Ok(())
}
}
impl<'a> MoleculeSymmetrisationBootstrapDriver<'a> {
/// Returns a builder to construct a [`MoleculeSymmetrisationBootstrapDriver`] structure.
pub fn builder() -> MoleculeSymmetrisationBootstrapDriverBuilder<'a> {
MoleculeSymmetrisationBootstrapDriverBuilder::default()
}
/// Executes molecule symmetrisation by bootstrapping.
fn symmetrise_molecule(&mut self) -> Result<(), anyhow::Error> {
log_title("Molecule Symmetrisation by Bootstrapping");
qsym2_output!("");
let params = self.parameters;
params.log_output_display();
let mut trial_mol = self.molecule.recentre();
if params.verbose >= 1 {
let orig_mol = self
.molecule
.adjust_threshold(params.target_distance_threshold);
qsym2_output!("Unsymmetrised original molecule:");
orig_mol.log_output_display();
qsym2_output!("");
qsym2_output!("Unsymmetrised recentred molecule:");
trial_mol.log_output_display();
qsym2_output!("");
}
if params.reorientate_molecule {
// If reorientation is requested, the trial molecule is reoriented prior to
// symmetrisation, so that the symmetrisation procedure acts on the reoriented molecule
// itself. The molecule might become disoriented during the symmetrisation process, but
// any such disorientation is likely to be fairly small, and post-symmetrisation
// corrections on small disorientation are better than on large disorientation.
trial_mol.reorientate_mut(params.target_moi_threshold);
qsym2_output!("Unsymmetrised recentred and reoriented molecule:");
trial_mol.log_output_display();
qsym2_output!("");
};
log_subtitle("Iterative molecule symmetry bootstrapping");
qsym2_output!("");
qsym2_output!("Thresholds:");
qsym2_output!(
" Loose : {:.3e} (MoI) - {:.3e} (distance)",
params.loose_distance_threshold,
params.loose_moi_threshold,
);
qsym2_output!(
" Target: {:.3e} (MoI) - {:.3e} (distance)",
params.target_moi_threshold,
params.target_distance_threshold
);
qsym2_output!("");
qsym2_output!("Convergence criteria:");
qsym2_output!(
" either: (1) when the loose-threshold symmetry agrees with the target-threshold symmetry,",
);
qsym2_output!(
" or : (2) when the target-threshold symmetry contains more elements than the loose-threshold symmetry and has been consistently identified for {} consecutive iteration{}.",
params.consistent_target_symmetry_iterations,
if params.consistent_target_symmetry_iterations == 1 { "" } else { "s" }
);
qsym2_output!("");
let count_length = usize::try_from(params.max_iterations.ilog10() + 1).map_err(|_| {
format_err!(
"Unable to convert `{}` to `usize`.",
params.max_iterations.ilog10() + 1
)
})?;
qsym2_output!("{}", "┈".repeat(count_length + 101));
qsym2_output!(
" {:>count_length$} {:>22} {:>19} {:>22} {:>19} {:>10}",
"#",
"Rot. sym. (loose)",
"Group (loose)",
"Rot. sym. (target)",
"Group (target)",
"Converged?",
);
qsym2_output!("{}", "┈".repeat(count_length + 101));
let mut symmetrisation_count = 0;
let mut consistent_target_sym_count = 0;
let mut loose_ops = vec![];
let mut prev_target_sym_group_name: Option<String> = None;
let mut converged = false;
while symmetrisation_count == 0
|| (!converged && symmetrisation_count < params.max_iterations)
{
symmetrisation_count += 1;
// -------------------------------
// Loose threshold symmetry search
// -------------------------------
let mut loose_mol =
trial_mol.adjust_threshold(self.parameters.loose_distance_threshold);
let loose_presym = PreSymmetry::builder()
.moi_threshold(self.parameters.loose_moi_threshold)
.molecule(&loose_mol)
.build()
.map_err(|_| {
format_err!("Cannot construct a loose-threshold pre-symmetry structure.")
})?;
let mut loose_sym = Symmetry::new();
// This might fail, but that's fine. We are bootstrapping.
let _loose_res = loose_sym.analyse(&loose_presym, self.parameters.use_magnetic_group);
// Only the operations are needed for the symmetrisation. We avoid constructing the
// full abstract group here, as group closure might not be fulfilled due to the low
// thresholds.
loose_ops.extend_from_slice(
&loose_sym.generate_all_operations(self.parameters.infinite_order_to_finite),
);
let n_ops_f64 = loose_ops.len().to_f64().ok_or_else(|| {
format_err!("Unable to convert the number of operations to `f64`.")
})?;
// Generate transformation matrix and atom permutations for each operation
let ts = loose_ops
.into_par_iter()
.flat_map(|op| {
let tmat = op
.get_3d_spatial_matrix()
.select(Axis(0), &[2, 0, 1])
.select(Axis(1), &[2, 0, 1])
.reversed_axes();
let ord_perm = op
.act_permute(&loose_mol.molecule_ordinary_atoms())
.ok_or_else(|| {
format_err!(
"Unable to determine the ordinary-atom permutation corresponding to `{op}`."
)
})?;
let mag_perm_opt = loose_mol
.molecule_magnetic_atoms()
.as_ref()
.and_then(|loose_mag_mol| op.act_permute(loose_mag_mol));
let elec_perm_opt = loose_mol
.molecule_electric_atoms()
.as_ref()
.and_then(|loose_elec_mol| op.act_permute(loose_elec_mol));
Ok::<_, anyhow::Error>((tmat, ord_perm, mag_perm_opt, elec_perm_opt))
})
.collect::<Vec<_>>();
// Apply symmetry operations to the ordinary atoms
let loose_ord_coords = Array2::from_shape_vec(
(loose_mol.atoms.len(), 3),
loose_mol
.atoms
.iter()
.flat_map(|atom| atom.coordinates.coords.iter().cloned())
.collect::<Vec<_>>(),
)?;
let ave_ord_coords = ts.iter().fold(
// Parallelisation here does not improve performance, and even causes more
// numerical instability.
Array2::<f64>::zeros(loose_ord_coords.raw_dim()),
|acc, (tmat, ord_perm, _, _)| {
// coords.dot(tmat) gives the atom positions transformed in R^3 by tmat.
// .select(Axis(0), perm.image()) then permutes the rows so that the atom positions
// go back to approximately where they were originally.
acc + loose_ord_coords.dot(tmat).select(Axis(0), ord_perm.image())
},
) / n_ops_f64;
loose_mol
.atoms
.par_iter_mut()
.enumerate()
.for_each(|(i, atom)| {
atom.coordinates = Point3::<f64>::from_slice(
ave_ord_coords
.row(i)
.as_slice()
.expect("Unable to convert a row of averaged coordinates to a slice."),
)
});
// Apply symmetry operations to the magnetic atoms, if any
if let Some(mag_atoms) = loose_mol.magnetic_atoms.as_mut() {
let loose_mag_coords = Array2::from_shape_vec(
(mag_atoms.len(), 3),
mag_atoms
.iter()
.flat_map(|atom| atom.coordinates.coords.iter().cloned())
.collect::<Vec<_>>(),
)?;
let ave_mag_coords = ts.iter().fold(
Ok(Array2::<f64>::zeros(loose_mag_coords.raw_dim())),
|acc: Result<Array2<f64>, anyhow::Error>, (tmat, _, mag_perm_opt, _)| {
// coords.dot(tmat) gives the atom positions transformed in R^3 by tmat.
// .select(Axis(0), perm.image()) then permutes the rows so that the atom positions
// go back to approximately where they were originally.
Ok(acc?
+ loose_mag_coords.dot(tmat).select(
Axis(0),
mag_perm_opt
.as_ref()
.ok_or_else(|| {
format_err!("Expected magnetic atom permutation not found.")
})?
.image(),
))
},
)? / n_ops_f64;
mag_atoms.iter_mut().enumerate().for_each(|(i, atom)| {
atom.coordinates = Point3::<f64>::from_slice(
ave_mag_coords
.row(i)
.as_slice()
.expect("Unable to convert a row of averaged coordinates to a slice."),
)
});
}
// Apply symmetry operations to the electric atoms, if any
if let Some(elec_atoms) = loose_mol.electric_atoms.as_mut() {
let loose_elec_coords = Array2::from_shape_vec(
(elec_atoms.len(), 3),
elec_atoms
.iter()
.flat_map(|atom| atom.coordinates.coords.iter().cloned())
.collect::<Vec<_>>(),
)?;
let ave_elec_coords = ts.iter().fold(
Ok(Array2::<f64>::zeros(loose_elec_coords.raw_dim())),
|acc: Result<Array2<f64>, anyhow::Error>, (tmat, _, _, elec_perm_opt)| {
// coords.dot(tmat) gives the atom positions transformed in R^3 by tmat.
// .select(Axis(0), perm.image()) then permutes the rows so that the atom positions
// go back to approximately where they were originally.
Ok(acc?
+ loose_elec_coords.dot(tmat).select(
Axis(0),
elec_perm_opt
.as_ref()
.ok_or_else(|| {
format_err!("Expected electric atom permutation not found.")
})?
.image(),
))
},
)? / n_ops_f64;
elec_atoms.iter_mut().enumerate().for_each(|(i, atom)| {
atom.coordinates = Point3::<f64>::from_slice(
ave_elec_coords
.row(i)
.as_slice()
.expect("Unable to convert a row of averaged coordinates to a slice."),
)
});
}
trial_mol = loose_mol;
// Recentre and reorientate after symmetrisation
trial_mol.recentre_mut();
if params.reorientate_molecule {
// If reorientation is requested, the trial molecule is reoriented prior to
// symmetrisation, so that the symmetrisation procedure acts on the reoriented molecule
// itself. The molecule might become disoriented during the symmetrisation process, but
// any such disorientation is likely to be fairly small, and post-symmetrisation
// corrections on small disorientation are better than on large disorientation.
trial_mol.reorientate_mut(params.target_moi_threshold);
};
// -------------------------------
// Target threshold symmetry check
// -------------------------------
let target_mol = trial_mol.adjust_threshold(self.parameters.target_distance_threshold);
let target_presym = PreSymmetry::builder()
.moi_threshold(self.parameters.target_moi_threshold)
.molecule(&target_mol)
.build()
.map_err(|_| {
format_err!("Cannot construct a target-threshold pre-symmetry structure.")
})?;
let mut target_sym = Symmetry::new();
let _ = target_sym.analyse(&target_presym, params.use_magnetic_group);
let target_loose_consistent = target_sym.n_elements() == loose_sym.n_elements()
&& target_sym.group_name.is_some()
&& target_sym.group_name == loose_sym.group_name;
if target_sym.group_name == prev_target_sym_group_name
&& target_sym.n_elements() >= loose_sym.n_elements()
{
consistent_target_sym_count += 1;
} else {
consistent_target_sym_count = 0;
}
prev_target_sym_group_name = target_sym.group_name.clone();
let target_consistent =
consistent_target_sym_count >= params.consistent_target_symmetry_iterations;
converged = target_loose_consistent || target_consistent;
let converged_reason = [target_loose_consistent, target_consistent]
.iter()
.enumerate()
.filter_map(|(i, c)| {
if *c {
Some(format!("({})", i + 1))
} else {
None
}
})
.join("");
qsym2_output!(
" {:>count_length$} {:>22} {:>19} {:>22} {:>19} {:>10}",
symmetrisation_count,
loose_presym.rotational_symmetry.to_string(),
format!(
"{} ({})",
loose_sym.group_name.as_ref().unwrap_or(&"--".to_string()),
loose_sym.n_elements()
),
target_presym.rotational_symmetry.to_string(),
format!(
"{} ({})",
target_sym.group_name.as_ref().unwrap_or(&"--".to_string()),
target_sym.n_elements()
),
if converged {
"yes ".to_string() + &converged_reason
} else {
"no".to_string()
},
);
loose_ops =
target_sym.generate_all_operations(self.parameters.infinite_order_to_finite);
}
qsym2_output!("{}", "┈".repeat(count_length + 101));
qsym2_output!("");
// --------------------------------
// Verify the symmetrisation result
// --------------------------------
qsym2_output!("Verifying symmetrisation results...");
qsym2_output!("");
let verifying_pd_params = SymmetryGroupDetectionParams::builder()
.moi_thresholds(&[params.target_moi_threshold])
.distance_thresholds(&[params.target_distance_threshold])
.time_reversal(params.use_magnetic_group)
.write_symmetry_elements(true)
.result_save_name(params.symmetrised_result_save_name.clone())
.build()?;
let mut verifying_pd_driver = SymmetryGroupDetectionDriver::builder()
.parameters(&verifying_pd_params)
.molecule(Some(&trial_mol))
.build()?;
verifying_pd_driver.run()?;
let verifying_pd_res = verifying_pd_driver.result()?;
let verifying_group_name = if params.use_magnetic_group {
verifying_pd_res
.magnetic_symmetry
.as_ref()
.and_then(|magsym| magsym.group_name.as_ref())
} else {
verifying_pd_res
.unitary_symmetry
.group_name
.as_ref()
};
ensure!(
prev_target_sym_group_name.as_ref() == verifying_group_name,
"Mismatched symmetry: iterative symmetry bootstrapping found {}, but verification found {}.",
prev_target_sym_group_name.as_ref().unwrap_or(&"--".to_string()),
verifying_group_name.unwrap_or(&"--".to_string()),
);
qsym2_output!("Verifying symmetrisation results... Done.");
qsym2_output!("");
// --------------
// Saving results
// --------------
self.result = Some(
MoleculeSymmetrisationBootstrapResult::builder()
.parameters(self.parameters)
.symmetrised_molecule(trial_mol.clone())
.build()?,
);
if let Some(xyz_name) = params.symmetrised_result_xyz.as_ref() {
let mut path = xyz_name.clone();
path.set_extension("xyz");
verifying_pd_res
.pre_symmetry
.recentred_molecule
.to_xyz(&path)?;
qsym2_output!("Symmetrised molecule written to: {}", path.display());
qsym2_output!("");
}
Ok(())
}
}
impl<'a> QSym2Driver for MoleculeSymmetrisationBootstrapDriver<'a> {
type Params = MoleculeSymmetrisationBootstrapParams;
type Outcome = MoleculeSymmetrisationBootstrapResult<'a>;
fn result(&self) -> Result<&Self::Outcome, anyhow::Error> {
self.result
.as_ref()
.ok_or_else(|| format_err!("No molecule sprucing results found."))
}
fn run(&mut self) -> Result<(), anyhow::Error> {
self.symmetrise_molecule()
}
}