1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
//! Atomic-orbital $`n`$-centre overlap evaluations.

/// Implements the `overlap` method for [`crate::integrals::shell_tuple::ShellTuple`] and
/// [`crate::integrals::shell_tuple::ShellTupleCollection`] of a specified pattern.
macro_rules! impl_shell_tuple_overlap {
    ( $RANK:ident, <$($shell_name:ident),+> ) => {
        #[duplicate_item(
            [
                dtype [ f64 ]
                zg_type [ &self.zg ]
                dd_type [ &self.dd ]
                rl2cart_type [
                    self.rl2carts[i]
                        .as_ref()
                        .unwrap_or_else(|| panic!("Transformation matrix to convert shell {i} to spherical order not found."))
                ]
                exp_kqs_func [
                    if self.ks.iter().any(|k| k.is_some()) {
                        panic!("Real-valued overlaps cannot handle plane-wave vectors.")
                    } else {
                        (
                            None::<Vec<Array<f64, Dim<[usize; $RANK]>>>>,
                            None::<Vec<Array<f64, Dim<[usize; $RANK]>>>>,
                        )
                    }
                ]
                exp_ks_kqs_to_int_func [
                    (0..3).for_each(|i| {
                        match (exp_ks_opt.as_ref(), exp_kqs_opt.as_ref()) {
                            (Some(_), _) | (_, Some(_)) => {
                                panic!("Real-valued overlaps cannot handle plane-wave vectors.")
                            }
                            (None, None) => {
                                ints_r[i][l_tuple][n_tuple] = Some(
                                    &pre_zg * &exp_zgs[i]
                                );
                            }
                        }
                    })
                ]
                n_recur_k_term_kk [ _ ]
                n_recur_k_term_func [
                    panic!("Real-valued overlaps cannot handle plane-wave vectors.")
                ]
                l_recur_k_term_kr [ _ ]
                l_recur_k_term_func [
                    panic!("Real-valued overlaps cannot handle plane-wave vectors.")
                ]
            ]
            [
                dtype [ C128 ]
                zg_type [ self.zg.mapv(C128::from) ]
                dd_type [ &self.dd.mapv(C128::from) ]
                rl2cart_type [
                    &self.rl2carts[i]
                        .as_ref()
                        .unwrap_or_else(|| panic!("Transformation matrix to convert shell {i} to spherical order not found."))
                        .mapv(C128::from)
                ]
                exp_kqs_func [
                    if self.ks.iter().any(|k| k.is_some()) {
                        // exp_ks = exp(-|k|^2 / 4 zg)
                        // exp_ks[i] is the contribution from the ith Cartesian component.
                        // zg is primitive-combination-specific.
                        let exp_ks = (0..3).map(|i| {
                            self.zg.mapv(|zg| {
                                (-self.k[i].abs().powi(2) / (4.0 * zg)).exp()
                            })
                        }).collect::<Vec<_>>();

                        // exp_kqs = exp(ii * sum(j) k_j · q_j)
                        // exp_kqs[i] is the contribution from the ith Cartesian component.
                        // q_j is primitive-combination-specific.
                        let exp_kqs = (0..3).map(|i| {
                            (0..$RANK).filter_map(|j| {
                                match (self.ks[j], self.qs[j].as_ref()) {
                                    (Some(kj), Some(qj)) => {
                                        Some(
                                            qj.mapv(|qjj| kj[i] * qjj[i])
                                        )
                                    }
                                    _ => None
                                }
                            })
                            .fold(
                                Array::<C128, Dim<[usize; $RANK]>>::zeros(self.zg.raw_dim()),
                                |acc, arr| acc + arr
                            )
                            .mapv(|x| (x * C128::i()).exp())
                        })
                        .collect::<Vec<_>>();
                        (Some(exp_ks), Some(exp_kqs))
                    } else {
                        (None, None)
                    }
                ]
                exp_ks_kqs_to_int_func [
                    (0..3).for_each(|i| {
                        match (exp_ks_opt.as_ref(), exp_kqs_opt.as_ref()) {
                            // Element-wise multiplication. Each element is for a specific
                            // primitive combination.
                            (Some(exp_ks), Some(exp_kqs)) => {
                                ints_r[i][l_tuple][n_tuple] = Some(
                                    (&pre_zg * &exp_zgs[i] * &exp_ks[i]).mapv(C128::from)
                                        * &exp_kqs[i]
                                );
                            }
                            _ => {
                                ints_r[i][l_tuple][n_tuple] = Some(
                                    (&pre_zg * &exp_zgs[i]).mapv(C128::from)
                                );
                            }
                        }
                    })
                ]
                n_recur_k_term_kk [ kk ]
                n_recur_k_term_func [
                    // 1 / (2 * zg) * sum(i) ii * k_iα * [[:|:]]
                    // zg is primitive-combination-specific.
                    (0..3).for_each(|i| {
                        let add_term = self.zg.mapv(|zg| {
                            C128::i() * kk[i] / (2.0 * zg)
                        }) * ints_r[i][l_tuple][n_tuple].as_ref().unwrap_or_else(|| {
                            panic!("({l_tuple:?}, {n_tuple:?}) => ({l_tuple:?}, {next_n_tuple:?}) failed.")
                        });
                        if let Some(arr) = ints_r[i][l_tuple][next_n_tuple].as_mut() {
                            Zip::from(arr).and(&add_term).for_each(|a, &t| *a += t);
                        } else {
                            ints_r[i][l_tuple][next_n_tuple] = Some(add_term);
                        }
                    });
                ]
                l_recur_k_term_kr [ kr ]
                l_recur_k_term_func [
                    // -ii * k_gα * [[:|:]]
                    (0..3).for_each(|i| {
                        let add_term = C128::i()
                        * kr[i]
                        * ints_r[i][l_tuple][n_tuple].as_ref().unwrap_or_else(|| {
                            panic!("({l_tuple:?}, {n_tuple:?}) => ({next_l_tuple:?}, {n_tuple:?}) failed.")
                        });
                        if let Some(arr) = ints_r[i][next_l_tuple][n_tuple].as_mut() {
                            Zip::from(arr).and(&add_term).for_each(|a, &t| *a -= t);
                        } else {
                            ints_r[i][next_l_tuple][n_tuple] = Some(-add_term);
                        }
                    });
                ]
            ]
        )]
        impl<'a> ShellTuple<'a, $RANK, dtype> {
            /// Calculates the overlap arrays for this shell tuple.
            ///
            /// # Arguments
            ///
            /// * `ls` - The derivative pattern.
            ///
            /// # Returns
            ///
            /// A vector of overlap arrays, each of which is for one derivative component.
            pub(crate) fn overlap(
                &self, ls: [usize; $RANK]
            ) -> Vec<Array<dtype, Dim<[usize; $RANK]>>> {
                // ~~~~~~~~~~~~~~~~~~~
                // Preparation begins.
                // ~~~~~~~~~~~~~~~~~~~

                // We require extra Cartesian degrees to calculate derivatives, because each
                // derivative order increases a corresponding Cartesian rank by one.
                let ns: [usize; $RANK] = if ls.iter().any(|l| *l > 0) {
                    let mut ns = self.ns.clone();
                    ns.iter_mut().for_each(|n| *n += 1);
                    ns
                } else {
                    self.ns.clone()
                };

                // Generate all terms in recurrence series
                // First index: Cartesian component
                // Next stc.rank indices: l-recursion indices
                // Next stc.rank indices: n-recursion indices
                // Last stc.rank indices: primitive indices
                // E.g.: rank 3,
                //   ints_r[1][(0, 0, 1)][(0, 1, 2)][(3, 8, 7)]: y-component integral value with
                //     0th y-derivative of 0th Cartesian y-power of 3rd primitive on first shell,
                //     0th y-derivative of 1st Cartesian y-power of 8th primitive on second shell, and
                //     1st y-derivative of 2nd Cartesian y-power of 7th primitive on third shell
                let lrecursion_shape = {
                    let mut ls_mut = ls.clone();
                    ls_mut.iter_mut().for_each(|l| *l += 1);
                    ls_mut
                };
                let nrecursion_shape = {
                    let mut ns_mut = ns.clone();
                    ns_mut.iter_mut().for_each(|n| *n += 1);
                    ns_mut
                };
                let arr = Array::<_, Dim<[usize; $RANK]>>::from_elem(
                    lrecursion_shape, Array::<_, Dim<[usize; $RANK]>>::from_elem(
                        nrecursion_shape, None::<Array::<dtype, Dim<[usize; $RANK]>>>
                    )
                );
                let mut ints_r = [arr.clone(), arr.clone(), arr];

                let default_tuple = [$(replace_expr!(($shell_name) 0)),+];
                let l_tuples = ls
                    .iter()
                    .map(|l| 0..=*l)
                    .multi_cartesian_product()
                    .map(|ltuple| {
                        let mut ltuple_arr = default_tuple.clone();
                        ltuple_arr.iter_mut().enumerate().for_each(|(i, l)| *l = ltuple[i]);
                        ltuple_arr
                    })
                    .collect::<Vec<_>>();
                let n_tuples = ns
                    .iter()
                    .map(|n| 0..=*n)
                    .multi_cartesian_product()
                    .map(|ntuple| {
                        let mut ntuple_arr = default_tuple.clone();
                        ntuple_arr.iter_mut().enumerate().for_each(|(i, n)| *n = ntuple[i]);
                        ntuple_arr
                    })
                    .collect::<Vec<_>>();
                let n_tuples_noextra = ns
                    .iter()
                    .map(|n| 0..*n)
                    .multi_cartesian_product()
                    .map(|ntuple| {
                        let mut ntuple_arr = default_tuple.clone();
                        ntuple_arr.iter_mut().enumerate().for_each(|(i, n)| *n = ntuple[i]);
                        ntuple_arr
                    })
                    .collect::<Vec<_>>();

                let all_tuples = l_tuples.iter().cloned().cartesian_product(
                    n_tuples.iter().cloned()
                ).into_iter().collect::<IndexSet<_>>();
                let mut remaining_tuples = all_tuples.clone();

                let remaining_tuples_noextra = l_tuples.iter().cloned().cartesian_product(
                    n_tuples_noextra.iter().cloned()
                ).into_iter().collect::<IndexSet<_>>();

                let extra_tuples = all_tuples
                    .difference(&remaining_tuples_noextra)
                    .cloned()
                    .collect::<IndexSet<_>>();
                // ~~~~~~~~~~~~~~~~~
                // Preparation ends.
                // ~~~~~~~~~~~~~~~~~

                // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                // Loop over all tuples begins.
                // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                for (tuple_index, (l_tuple, n_tuple)) in all_tuples.into_iter().enumerate() {
                    // ~~~~~~~~~~~~~~~~~~~~
                    // Initial term begins.
                    // ~~~~~~~~~~~~~~~~~~~~
                    if tuple_index == 0 {
                        debug_assert!(remaining_tuples.shift_remove(&(l_tuple, n_tuple)));

                        // pre_zg = sqrt(pi / zg)
                        // zg is primitive-combination-specific.
                        let pre_zg = self.zg.mapv(|zg| (std::f64::consts::PI / zg).sqrt());

                        // exp_zgs = sum(g < h) [ -(z_g * z_h) / zg * |r_g - r_h|^2 ]
                        // exp_zgs[i] is the contribution from the ith Cartesian component.
                        // z_g, z_h, and zg are primitive-combination-specific.
                        let exp_zgs = (0..3).map(|i| {
                            let mut exp_zg_i = self.zg.clone();
                            exp_zg_i.indexed_iter_mut().for_each(|(indices, zg)| {
                                let ($($shell_name),+) = indices;
                                let indices = [$($shell_name),+];
                                *zg = (
                                    -1.0
                                    / *zg
                                    * (0..$RANK).flat_map(|g| ((g + 1)..$RANK).map(move |h| {
                                        self.zs[g][indices[g]]
                                            * self.zs[h][indices[h]]
                                            * (self.rs[g][i] - self.rs[h][i]).powi(2)
                                    })).sum::<f64>()
                                ).exp();
                            });
                            exp_zg_i
                        }).collect::<Vec<_>>();

                        // let (exp_ks_opt, exp_kqs_opt) = if self.ks.iter().any(|k| k.is_some()) {
                        //     // exp_ks = exp(-|k|^2 / 4 zg)
                        //     // exp_ks[i] is the contribution from the ith Cartesian component.
                        //     // zg is primitive-combination-specific.
                        //     let exp_ks = (0..3).map(|i| {
                        //         self.zg.mapv(|zg| {
                        //             (-self.k[i].abs().powi(2) / (4.0 * zg)).exp()
                        //         })
                        //     }).collect::<Vec<_>>();

                        //     // exp_kqs = exp(ii * sum(j) k_j · q_j)
                        //     // exp_kqs[i] is the contribution from the ith Cartesian component.
                        //     // q_j is primitive-combination-specific.
                        //     let exp_kqs = (0..3).map(|i| {
                        //         (0..$RANK).filter_map(|j| {
                        //             match (self.ks[j], self.qs[j].as_ref()) {
                        //                 (Some(kj), Some(qj)) => {
                        //                     Some(
                        //                         qj.mapv(|qjj| kj[i] * qjj[i])
                        //                     )
                        //                 }
                        //                 _ => None
                        //             }
                        //         })
                        //         .fold(
                        //             Array::<C128, Dim<[usize; $RANK]>>::zeros(self.zg.raw_dim()),
                        //             |acc, arr| acc + arr
                        //         )
                        //         .mapv(|x| (x * C128::i()).exp())
                        //     })
                        //     .collect::<Vec<_>>();
                        //     (Some(exp_ks), Some(exp_kqs))
                        // } else {
                        //     (None, None)
                        // };
                        let (exp_ks_opt, exp_kqs_opt) = exp_kqs_func;

                        // (0..3).for_each(|i| {
                        //     match (exp_ks_opt.as_ref(), exp_kqs_opt.as_ref()) {
                        //         // Element-wise multiplication. Each element is for a specific
                        //         // primitive combination.
                        //         (Some(exp_ks), Some(exp_kqs)) => {
                        //             ints_r[i][l_tuple][n_tuple] = Some(
                        //                 (&pre_zg * &exp_zgs[i] * &exp_ks[i]).mapv(C128::from)
                        //                     * &exp_kqs[i]
                        //             );
                        //         }
                        //         _ => {
                        //             ints_r[i][l_tuple][n_tuple] = Some(
                        //                 (&pre_zg * &exp_zgs[i]).mapv(C128::from)
                        //             );
                        //         }
                        //     }
                        // });
                        exp_ks_kqs_to_int_func
                    }
                    // ~~~~~~~~~~~~~~~~~~
                    // Initial term ends.
                    // ~~~~~~~~~~~~~~~~~~

                    // ~~~~~~~~~~~~~~~~~~~~~~~~
                    // n-recurrent terms begin.
                    // ~~~~~~~~~~~~~~~~~~~~~~~~
                    for r_index in 0..$RANK {
                        // r_index: recursion index (j in handwritten note)
                        let next_n_tuple = {
                            let mut new_n_tuple = n_tuple.clone();
                            new_n_tuple.iter_mut().enumerate().for_each(|(t, n)| {
                                if t == r_index { *n += 1 }
                            });
                            new_n_tuple
                        };
                        if !remaining_tuples.shift_remove(&(l_tuple, next_n_tuple)) {
                            continue
                        }

                        (0..3).for_each(|i| {
                            // (rg - r_j) * [[:|:]]
                            // rg is primitive-combination-specific.
                            ints_r[i][l_tuple][next_n_tuple] = Some(
                                self.rg.map(|r| dtype::from(r[i] - self.rs[r_index][i]))
                                * ints_r[i][l_tuple][n_tuple].as_ref().unwrap_or_else(|| {
                                    panic!("({l_tuple:?}, {n_tuple:?}) => ({l_tuple:?}, {next_n_tuple:?}) failed.")
                                })
                            );
                        });

                        (0..$RANK).for_each(|k| {
                            // if let Some(kk) = self.ks[k].as_ref() {
                            //     // 1 / (2 * zg) * sum(i) ii * k_iα * [[:|:]]
                            //     // zg is primitive-combination-specific.
                            //     (0..3).for_each(|i| {
                            //         let add_term = self.zg.mapv(|zg| {
                            //             C128::i() * kk[i] / (2.0 * zg)
                            //         }) * ints_r[i][l_tuple][n_tuple].as_ref().unwrap_or_else(|| {
                            //             panic!("({l_tuple:?}, {n_tuple:?}) => ({l_tuple:?}, {next_n_tuple:?}) failed.")
                            //         });
                            //         if let Some(arr) = ints_r[i][l_tuple][next_n_tuple].as_mut() {
                            //             Zip::from(arr).and(&add_term).for_each(|a, &t| *a += t);
                            //         } else {
                            //             ints_r[i][l_tuple][next_n_tuple] = Some(add_term);
                            //         }
                            //     });
                            // };
                            if let Some(n_recur_k_term_kk) = self.ks[k].as_ref() {
                                n_recur_k_term_func
                            }

                            if n_tuple[k] > 0 {
                                let mut prev_n_tuple_k = n_tuple.clone();
                                prev_n_tuple_k.iter_mut().enumerate().for_each(|(t, n)| {
                                    if t == k { *n -= 1 }
                                });
                                debug_assert!(!remaining_tuples.contains(&(l_tuple, prev_n_tuple_k)));
                                // 1 / (2 * zg) * sum(i) Nα(n_i) * [[n_i - 1_α:|:]]
                                (0..3).for_each(|i| {
                                    let add_term = self.zg.mapv(|zg| {
                                        dtype::from(1.0)
                                        / (2.0 * zg)
                                        * n_tuple[k]
                                            .to_f64()
                                            .unwrap_or_else(|| panic!("Unable to convert `n_tuple[k]` = {} to `f64`.", n_tuple[k]))
                                    }) * ints_r[i][l_tuple][prev_n_tuple_k].as_ref().unwrap_or_else(|| {
                                        panic!("({l_tuple:?}, {prev_n_tuple_k:?}) => ({l_tuple:?}, {next_n_tuple:?}) failed.")
                                    });
                                    if let Some(arr) = ints_r[i][l_tuple][next_n_tuple].as_mut() {
                                        Zip::from(arr).and(&add_term).for_each(|a, &t| *a += t);
                                    } else {
                                        ints_r[i][l_tuple][next_n_tuple] = Some(add_term);
                                    }
                                });
                            };
                        });

                        if l_tuple[r_index] > 0 {
                            let mut prev_l_tuple = l_tuple.clone();
                            prev_l_tuple.iter_mut().enumerate().for_each(|(t, l)| {
                                if t == r_index { *l -= 1 }
                            });
                            debug_assert!(!remaining_tuples.contains(&(prev_l_tuple, n_tuple)));
                            // -Nα(l_j) * [[:l_j - 1_α|:]]
                            // Note that Nα(l_j) = (l_j)_α.
                            (0..3).for_each(|i| {
                                let add_term = dtype::from(l_tuple[r_index]
                                    .to_f64()
                                    .unwrap_or_else(|| panic!("Unable to convert `l_tuple[r_index]` = {} to `f64`.", l_tuple[r_index]))
                                )
                                * ints_r[i][prev_l_tuple][n_tuple]
                                    .as_ref()
                                    .unwrap_or_else(|| {
                                        panic!("({prev_l_tuple:?}, {n_tuple:?}) => ({l_tuple:?}, {next_n_tuple:?}) failed.")
                                    });
                                if let Some(arr) = ints_r[i][l_tuple][next_n_tuple].as_mut() {
                                    Zip::from(arr).and(&add_term).for_each(|a, &t| *a -= t);
                                } else {
                                    ints_r[i][l_tuple][next_n_tuple] = Some(-add_term);
                                }
                            });
                        }

                        (0..$RANK).for_each(|k| {
                            if l_tuple[k] > 0 {
                                let mut prev_l_tuple_k = l_tuple.clone();
                                prev_l_tuple_k.iter_mut().enumerate().for_each(|(t, l)| {
                                    if t == k { *l -= 1 }
                                });
                                debug_assert!(!remaining_tuples.contains(&(prev_l_tuple_k, n_tuple)));
                                // (1 / zg) * sum(g) z_g * Nα(l_g) * [[:l_g - 1_α|:]]
                                (0..3).for_each(|i| {
                                    let add_term = dtype::from(
                                        l_tuple[k]
                                            .to_f64()
                                            .unwrap_or_else(|| panic!("Unable to convert `l_tuple[k]` = {} to `f64`.", l_tuple[k])))
                                    / zg_type
                                    * &self.zs[k] // broadcasting zs[k] to the shape of zg.
                                    * ints_r[i][prev_l_tuple_k][n_tuple].as_ref().unwrap_or_else(|| {
                                        panic!("({prev_l_tuple_k:?}, {n_tuple:?}) => ({l_tuple:?}, {next_n_tuple:?}) failed.")
                                    });
                                    if let Some(arr) = ints_r[i][l_tuple][next_n_tuple].as_mut() {
                                        Zip::from(arr).and(&add_term).for_each(|a, &t| *a += t);
                                    } else {
                                        ints_r[i][l_tuple][next_n_tuple] = Some(add_term);
                                    }
                                });
                            }
                        })
                    }
                    // ~~~~~~~~~~~~~~~~~~~~~~
                    // n-recurrent terms end.
                    // ~~~~~~~~~~~~~~~~~~~~~~

                    // ~~~~~~~~~~~~~~~~~~~~~~~~
                    // l-recurrent terms begin.
                    // ~~~~~~~~~~~~~~~~~~~~~~~~
                    if extra_tuples.contains(&(l_tuple, n_tuple)) {
                        continue
                    }
                    for r_index in 0..$RANK {
                        // r_index: recursion index (g in handwritten note)
                        let next_l_tuple = {
                            let mut new_l_tuple = l_tuple.clone();
                            new_l_tuple.iter_mut().enumerate().for_each(|(t, l)| {
                                if t == r_index { *l += 1 }
                            });
                            new_l_tuple
                        };
                        if !remaining_tuples.shift_remove(&(next_l_tuple, n_tuple)) {
                            continue
                        }

                        if let Some(l_recur_k_term_kr) = self.ks[r_index].as_ref() {
                            // // -ii * k_gα * [[:|:]]
                            // (0..3).for_each(|i| {
                            //     let add_term = C128::i()
                            //     * kr[i]
                            //     * ints_r[i][l_tuple][n_tuple].as_ref().unwrap_or_else(|| {
                            //         panic!("({l_tuple:?}, {n_tuple:?}) => ({next_l_tuple:?}, {n_tuple:?}) failed.")
                            //     });
                            //     if let Some(arr) = ints_r[i][next_l_tuple][n_tuple].as_mut() {
                            //         Zip::from(arr).and(&add_term).for_each(|a, &t| *a -= t);
                            //     } else {
                            //         ints_r[i][next_l_tuple][n_tuple] = Some(-add_term);
                            //     }
                            // });
                            l_recur_k_term_func
                        }

                        let next_n_tuple = {
                            let mut new_n_tuple = n_tuple.clone();
                            new_n_tuple.iter_mut().enumerate().for_each(|(t, n)| {
                                if t == r_index { *n += 1 }
                            });
                            new_n_tuple
                        };
                        debug_assert!(next_n_tuple.iter().enumerate().all(|(t, n)| *n <= ns[t]));
                        debug_assert!(!remaining_tuples.contains(&(l_tuple, next_n_tuple)));

                        // 2 * z_g * [[n_g + 1_α:|:]]
                        (0..3).for_each(|i| {
                            let add_term = dtype::from(2.0)
                            * ints_r[i][l_tuple][next_n_tuple].as_ref().unwrap_or_else(|| {
                                panic!("({l_tuple:?}, {next_n_tuple:?}) => ({next_l_tuple:?}, {n_tuple:?}) failed.")
                            })
                            * &self.zs[r_index]; // broadcasting zs[r_index] to the shape of
                                                 // ints_r[i][l_tuple][next_n_tuple].
                            if let Some(arr) = ints_r[i][next_l_tuple][n_tuple].as_mut() {
                                Zip::from(arr).and(&add_term).for_each(|a, &t| *a += t);
                            } else {
                                ints_r[i][next_l_tuple][n_tuple] = Some(add_term);
                            }
                        });

                        if n_tuple[r_index] > 0 {
                            let mut prev_n_tuple = n_tuple.clone();
                            prev_n_tuple.iter_mut().enumerate().for_each(|(t, n)| {
                                if t == r_index { *n -= 1 }
                            });
                            debug_assert!(!remaining_tuples.contains(&(l_tuple, prev_n_tuple)));

                            // -Nα(n_g) * [[n_g - 1_α:|:]]
                            (0..3).for_each(|i| {
                                let add_term = dtype::from(
                                    n_tuple[r_index]
                                        .to_f64()
                                        .unwrap_or_else(|| panic!("Unable to convert `n_tuple[r_index]` = {} to `f64`.", n_tuple[r_index]))
                                )
                                * ints_r[i][l_tuple][prev_n_tuple].as_ref().unwrap_or_else(|| {
                                    panic!("({l_tuple:?}, {prev_n_tuple:?}) => ({next_l_tuple:?}, {n_tuple:?}) failed.")
                                });
                                if let Some(arr) = ints_r[i][next_l_tuple][n_tuple].as_mut() {
                                    Zip::from(arr).and(&add_term).for_each(|a, &t| *a -= t);
                                } else {
                                    ints_r[i][next_l_tuple][n_tuple] = Some(-add_term);
                                }
                            });
                        }
                    }
                    // ~~~~~~~~~~~~~~~~~~~~~~
                    // l-recurrent terms end.
                    // ~~~~~~~~~~~~~~~~~~~~~~
                }
                // ~~~~~~~~~~~~~~~~~~~~~~~~~~
                // Loop over all tuples ends.
                // ~~~~~~~~~~~~~~~~~~~~~~~~~~

                // ~~~~~~~~~~~~~~~~~~~~~
                // Normalisation begins.
                // ~~~~~~~~~~~~~~~~~~~~~
                // Each element of `norm_arr` gives the scaling factor to be multiplied by an
                // integral involving a specific combination of primitives (i.e. in the integral,
                // each centre comprises a single Gaussian function) over one of the three
                // Cartesian directions, such that each primitive is normalised and that the
                // two-centre integrals〈g0|g0〉is precisely one.
                // The elements of `norm_arr` are only dependent on the exponents, not the
                // contraction coefficients, because `g0` is taken to have a coefficient of 1.
                // Contraction coefficients are introduced later.
                for n_tuple in n_tuples.iter() {
                    let rank_i32 = $RANK
                        .to_i32()
                        .expect("Unable to convert the tuple rank to `i32`.");
                    let norm_arr =
                        (2.0 / std::f64::consts::PI).sqrt().sqrt().powi(rank_i32)
                        * n_tuple.iter().map(|n| {
                            let doufac = if *n == 0 {
                                1
                            } else {
                                ((2 * n) - 1)
                                    .checked_double_factorial()
                                    .unwrap_or_else(|| panic!("Unable to obtain `{}!!`.", 2 * n - 1))
                            }
                            .to_f64()
                            .unwrap_or_else(|| panic!("Unable to convert `{}!!` to `f64`.", 2 * n - 1));
                            1.0 / doufac.sqrt()
                        }).product::<f64>()
                        * self.zd.map(|zd| zd.sqrt().sqrt());
                    let norm_arr = self
                        .zs
                        .iter()
                        .zip(n_tuple.iter())
                        .enumerate()
                        .fold(norm_arr, |acc, (j, (z, n))| {
                            let mut shape = [$(replace_expr!(($shell_name) 1)),+];
                            shape[j] = z.len();
                            let z_transformed = z.mapv(|z_val| {
                                if n.rem_euclid(2) == 0 {
                                    (4.0 * z_val).powi(
                                        (n.div_euclid(2))
                                            .to_i32()
                                            .expect("Unable to convert `n` to `i32`.")
                                    )
                                } else {
                                    (4.0 * z_val).powf(
                                        n.to_f64().expect("Unable to convert `n` to `f64`.")
                                        / 2.0
                                    )
                                }
                            })
                            .into_shape(shape)
                            .expect("Unable to convert transformed `z` to {$RANK} dimensions.");
                            acc * z_transformed
                        });

                    for l_tuple in l_tuples.iter() {
                        (0..3).for_each(|i| {
                            if let Some(arr) = ints_r[i][*l_tuple][*n_tuple].as_mut() {
                                Zip::from(arr)
                                    .and(&norm_arr)
                                    .for_each(|a, &n| *a *= dtype::from(n));
                            }
                        });
                    }
                }
                // ~~~~~~~~~~~~~~~~~~~
                // Normalisation ends.
                // ~~~~~~~~~~~~~~~~~~~

                // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                // Population of Cartesian integrals for each derivative component begins.
                // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                let lex_cart_orders = (0..=*ls.iter().max().expect("Unable to determine the maximum derivative order."))
                    .map(|l| CartOrder::lex(u32::try_from(l).expect("Unable to convert a derivative order to `u32`.")))
                    .collect::<Vec<_>>();
                let cart_shell_shape = {
                    let mut cart_shell_shape_iter = self
                        .ns
                        .iter()
                        .map(|n| ((n + 1) * (n + 2)).div_euclid(2));
                    $(
                        let $shell_name = cart_shell_shape_iter
                            .next()
                            .expect("cart_shell_shape out of range.");
                    )+
                    [$($shell_name),+]
                };
                let all_shells_contraction_str = (0..$RANK)
                    .map(|i| (i.to_u8().expect("Unable to convert a shell index to `u8`.") + 97) as char)
                    .collect::<String>();
                let shell_blocks = ls
                    .iter()
                    .map(|l| 0..((l + 1) * (l + 2)).div_euclid(2))
                    .multi_cartesian_product()
                    .map(|l_indices| {
                        // ls = [m, n, p, ...]
                        // l_indices = [a, b, c, ...]
                        //   - a-th component (lexicographic order) of the m-th derivative of the first shell,
                        //   - b-th component (lexicographic order) of the n-th derivative of the second shell,
                        //   - etc.
                        // The derivative components are arranged in lexicographic Cartersian order.
                        // If ls = [0, 1, 2], then the a particular l_indices could take the value
                        // [0, 2, 3] which represents
                        //   - 0th derivative of the first shell
                        //   - d/dz of the second shell (x, y, z)
                        //   - d2/dyy of the third shell (xx, xy, xz, yy, yz, zz)
                        debug_assert_eq!(l_indices.len(), $RANK);
                        let mut l_indices_iter = l_indices.into_iter();
                        $(
                            let $shell_name = l_indices_iter
                                .next()
                                .expect("l index out of range.");
                        )+
                        let l_indices = [$($shell_name),+];

                        // l_powers translates l_indices into tuples of component derivative orders
                        // for each shell.
                        // For example, with ls = [0, 1, 2] and l_indices = [0, 2, 3],
                        // l_powers is given by [(0, 0, 0), (0, 0, 1), (0, 2, 0)].
                        let l_powers = {
                            let mut l_powers_mut = [$(
                                replace_expr!(($shell_name) (0, 0, 0))
                            ),+];
                            l_powers_mut.iter_mut().enumerate().for_each(|(shell_index, l_power)| {
                                *l_power = lex_cart_orders[ls[shell_index]].cart_tuples[l_indices[shell_index]].clone();
                            });
                            l_powers_mut
                        };

                        // l_tuples_xyz gives l_tuple for each Cartesian component.
                        // With l_powers [(0, 0, 0), (0, 0, 1), (0, 2, 0)],
                        // l_tuples_xyz is given by
                        // [(0, 0, 0), (0, 0, 2), (0, 1, 0)]
                        //  ----x----  ----y----  ----z----
                        // which means: take the product of the (0, 0, 0) x-derivative,
                        // (0, 0, 2) y-derivative, and (0, 1, 0) z-derivative to give int_xyz.
                        // Essentially, l_tuples_xyz is transposed l_powers.
                        // l_tuples_xyz will be cloned inside the for loop below because it
                        // is consumed after every iteration.
                        let outer_l_tuples_xyz = {
                            let mut l_tuples_xyz_mut = [
                                [$(replace_expr!(($shell_name) 0usize)),+]; 3
                            ];
                            l_tuples_xyz_mut[0].iter_mut().enumerate().for_each(|(shell_index, l)| {
                                *l = usize::try_from(l_powers[shell_index].0)
                                    .expect("Unable to convert `l` to `usize`.");
                            });
                            l_tuples_xyz_mut[1].iter_mut().enumerate().for_each(|(shell_index, l)| {
                                *l = usize::try_from(l_powers[shell_index].1)
                                    .expect("Unable to convert `l` to `usize`.");
                            });
                            l_tuples_xyz_mut[2].iter_mut().enumerate().for_each(|(shell_index, l)| {
                                *l = usize::try_from(l_powers[shell_index].2)
                                    .expect("Unable to convert `l` to `usize`.");
                            });
                            l_tuples_xyz_mut
                        };

                        let mut cart_shell_block = Array::<dtype, Dim<[usize; $RANK]>>::zeros(
                            cart_shell_shape
                        );
                        for cart_indices in cart_shell_shape.iter().map(|d| 0..*d).multi_cartesian_product() {
                            // cart_indices = [i, j, k, l, ...]
                            //   - i-th Cartesian component (shell's specified order) of the first shell,
                            //   - j-th Cartesian component (shell's specified order) of the second shell,
                            //   - etc.
                            // If a shell has pure ordering, a lexicographic Cartesian order will
                            // be used. Integrals involving this shell will be converted back to
                            // pure form later.
                            // If shell_tuple.ns = [0, 2, 3, 1], then the a particular cart_indices could
                            // take the value [0, 2, 10, 1] which represents
                            //   - s function on the first shell
                            //   - dxz function on the second shell
                            //   - fzzz function on the third shell
                            //   - py function on the fourth shell
                            let mut cart_indices_iter = cart_indices.into_iter();
                            $(
                                let $shell_name = cart_indices_iter
                                    .next()
                                    .expect("cart_index out of range.");
                            )+
                            let cart_indices = [$($shell_name),+];

                            // cart_powers translates cart_indices into tuples of Cartesian powers
                            // for each shell.
                            // For example, with shell_tuple.ns = (0, 2, 3, 1) and
                            // cart_indices = (0, 2, 10, 1), cart_powers is given by
                            // [(0, 0, 0), (1, 0, 1), (0, 0, 3), (0, 1, 0)] (assuming
                            // lexicographic ordering).
                            let cart_powers = {
                                let mut cart_powers_mut = [$(
                                    replace_expr!(($shell_name) (0, 0, 0))
                                ),+];
                                cart_powers_mut.iter_mut().enumerate().for_each(|(shell_index, cart_power)| {
                                    let cart_order = match &self
                                        .shells[shell_index].0
                                        .basis_shell()
                                        .shell_order {
                                            ShellOrder::Pure(po) => CartOrder::lex(po.lpure),
                                            ShellOrder::Cart(co) => co.clone()
                                        };
                                    *cart_power = cart_order
                                        .cart_tuples[cart_indices[shell_index]]
                                        .clone();
                                });
                                cart_powers_mut
                            };

                            // n_tuples_xyz gives n_tuple for each Cartesian component.
                            // With cart_powers = [(0, 0, 0), (1, 0, 1), (0, 0, 3), (0, 1, 0)],
                            // n_tuples_xyz is given by
                            // [(0, 1, 0, 0), (0, 0, 0, 1), (0, 1, 3, 0)]
                            //  -----x------  -----y------  -----z------
                            // which means: take the product of the (0, 1, 0, 0) x-integral,
                            // (0, 0, 0, 1) y-integral, and (0, 1, 3, 0) z-integral to give int_xyz.
                            // Essentially, n_tuples_xyz is transposed cart_powers.
                            let l_tuples_xyz = outer_l_tuples_xyz.clone();
                            let n_tuples_xyz = {
                                let mut n_tuples_xyz_mut = [[$(replace_expr!(($shell_name) 0usize)),+]; 3];
                                n_tuples_xyz_mut[0].iter_mut().enumerate().for_each(|(shell_index, n)| {
                                    *n = usize::try_from(cart_powers[shell_index].0)
                                        .expect("Unable to convert `n` to `usize`.");
                                });
                                n_tuples_xyz_mut[1].iter_mut().enumerate().for_each(|(shell_index, n)| {
                                    *n = usize::try_from(cart_powers[shell_index].1)
                                        .expect("Unable to convert `n` to `usize`.");
                                });
                                n_tuples_xyz_mut[2].iter_mut().enumerate().for_each(|(shell_index, n)| {
                                    *n = usize::try_from(cart_powers[shell_index].2)
                                        .expect("Unable to convert `n` to `usize`.");
                                });
                                n_tuples_xyz_mut
                            };
                            let int_xyz = izip!(l_tuples_xyz.iter(), n_tuples_xyz.iter())
                                .enumerate()
                                .map(|(i, (l_tuple, n_tuple))| {
                                    ints_r[i][*l_tuple][*n_tuple].as_ref()
                                })
                                .collect::<Option<Vec<_>>>()
                                .map(|arrs| arrs.into_iter().fold(
                                    Array::<dtype, Dim<[usize; $RANK]>>::ones(
                                        self.primitive_shell_shape
                                    ),
                                    |acc, arr| acc * arr
                                ))
                                .unwrap_or_else(
                                    || Array::<dtype, Dim<[usize; $RANK]>>::zeros(
                                        self.primitive_shell_shape
                                    )
                                );

                            // Contraction coefficients are involved here.
                            cart_shell_block[cart_indices] = einsum(
                                &format!("{all_shells_contraction_str},{all_shells_contraction_str}->"),
                                &[&int_xyz, dd_type]
                            )
                                .expect("Unable to contract `int_xyz` with `dd`.")
                                .into_iter()
                                .next()
                                .expect("Unable to retrieve the result of the contraction between `int_xyz` and `dd`.");
                        }

                        // Transform some shells to spherical if necessary
                        if (0..$RANK).any(|i| matches!(self.shells[i].0.basis_shell().shell_order, ShellOrder::Pure(_))) {
                            // We need an extra letter for the contraction axis.
                            assert!($RANK < 26);
                            let rank_u8 = $RANK.to_u8().expect("Unable to convert the shell tuple rank to `u8`.");
                            let transformed_shell_block = (0..$RANK)
                                .fold(cart_shell_block, |acc, i| {
                                    if let ShellOrder::Pure(_) = self.shells[i].0.basis_shell().shell_order {
                                        let i_u8 = i.to_u8().expect("Unable to convert a shell index to `u8`.");
                                        let rl2cart = rl2cart_type;
                                        let cart_to_pure_contraction_str = format!(
                                            "{}{}",
                                            (i_u8 + 97) as char,
                                            (i_u8 + 97 + rank_u8) as char,
                                        );
                                        let result_str = (0..$RANK).map(|j| {
                                            if j == i {
                                                (i_u8 + 97 + rank_u8) as char
                                            } else {
                                                let j_u8 = j.to_u8().expect("Unable to convert a shell index to `u8`.");
                                                (j_u8 + 97) as char
                                            }
                                        }).collect::<String>();
                                        einsum(
                                            &format!(
                                                "{all_shells_contraction_str},\
                                                {cart_to_pure_contraction_str}->\
                                                {result_str}"
                                            ),
                                            &[&acc, rl2cart]
                                        )
                                        .unwrap_or_else(|_| panic!("Unable to convert shell {i} to spherical order."))
                                        .into_dimensionality::<Dim<[usize; $RANK]>>()
                                        .unwrap_or_else(|_| panic!("Unable to convert the transformed shell block into the correct shape."))
                                    } else {
                                        acc
                                    }
                                });
                            transformed_shell_block
                        } else {
                            cart_shell_block
                        }
                    }).collect::<Vec<_>>();
                // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
                // Population of Cartesian integrals for each derivative component ends.
                // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

                shell_blocks
            }
        }

        #[duplicate_item(
            [
                dtype [ f64 ]
            ]
            [
                dtype [ C128 ]
            ]
        )]
        impl<'a> ShellTupleCollection<'a, $RANK, dtype> {
            /// Calculates the overlap arrays for this shell tuple collection.
            ///
            /// # Arguments
            ///
            /// * `ls` - The derivative pattern.
            ///
            /// # Returns
            ///
            /// A vector of overlap arrays, each of which is for one derivative component.
            pub(crate) fn overlap(
                &self, ls: [usize; $RANK]
            ) -> Vec<Array<dtype, Dim<[usize; $RANK]>>> {
                let lex_cart_orders = (0..=*ls.iter().max().expect("Unable to determine the maximum derivative order."))
                    .map(|l| CartOrder::lex(u32::try_from(l).expect("Unable to convert a derivative order to `u32`.")))
                    .collect::<Vec<_>>();

                // shell_blockss = [shell_blocks0, shell_blocks1, ...]
                //   shell_blocks0: all derivative components for shell tuple 0
                //   shell_blocks0 = [shell_block00, shell_block11, ...]
                //     shell_block01: first derivative component for shell tuple 0
                let shell_blockss = self
                    .unique_shell_tuples_iter(ls)
                    .par_bridge()
                    .map(|(shell_tuple, unique_perm, equiv_perms)| {
                        log::debug!("Working on unique permutation: {unique_perm:?}");
                        (shell_tuple.overlap(ls), unique_perm, equiv_perms)
                    })
                    .collect::<Vec<_>>();

                // Pack integrals
                let intss = ls
                    .iter()
                    .map(|l| 0..(((l + 1) * (l + 2)).div_euclid(2)))
                    .multi_cartesian_product()
                    .enumerate()
                    .map(|(l_component_index, l_indices)| {
                        let mut l_indices_iter = l_indices.into_iter();
                        $(
                            let $shell_name = l_indices_iter
                                .next()
                                .expect("l index out of range.");
                        )+
                        let l_indices = [$($shell_name),+];

                        // l_powers translates l_indices into tuples of component derivative orders
                        // for each shell.
                        // For example, with ls = [0, 1, 2] and l_indices = [0, 2, 3],
                        // l_powers is given by [(0, 0, 0), (0, 0, 1), (0, 2, 0)].
                        let l_powers = {
                            let mut l_powers_mut = [$(
                                replace_expr!(($shell_name) (0, 0, 0))
                            ),+];
                            l_powers_mut.iter_mut().enumerate().for_each(|(shell_index, l_power)| {
                                *l_power = lex_cart_orders[ls[shell_index]].cart_tuples[l_indices[shell_index]].clone();
                            });
                            l_powers_mut
                        };
                        log::debug!("Component {l_component_index} is for derivative {l_powers:?}.");
                        let mut ints = Array::<dtype, Dim<[usize; $RANK]>>::zeros(
                            self.angular_all_shell_shape
                        );

                        shell_blockss.iter().for_each(|(shell_blocks, unique_perm, equiv_perms)| {
                            equiv_perms.iter().for_each(|&equiv_perm| {
                                let mut unique_perm_vec = unique_perm
                                    .iter()
                                    .map(|i| Some(*i))
                                    .collect::<Vec<_>>();
                                let mut transpose_indices_iter = equiv_perm.iter().map(|i| {
                                    let index = unique_perm_vec
                                        .iter()
                                        .position(|&j| j == Some(*i))
                                        .unwrap_or_else(|| {
                                            panic!("Unable to find a permutation that maps {unique_perm:?} to {equiv_perm:?}.");
                                        });
                                    unique_perm_vec[index] = None;
                                    index
                                });
                                $(
                                    let $shell_name = transpose_indices_iter
                                        .next()
                                        .expect("Shell index out of range.");
                                )+
                                let transpose_indices = [$($shell_name),+];

                                let mut shell_boundaries_iter = equiv_perm
                                    .iter()
                                    .enumerate()
                                    .map(|(shell_index, &i)| {
                                        self.basis_sets[shell_index].shell_boundaries()[i]
                                    });
                                $(
                                    let $shell_name = shell_boundaries_iter
                                        .next()
                                        .expect("Shell index out of range.");
                                )+
                                let shell_slices = s![$(
                                    $shell_name.0..$shell_name.1
                                ),+];
                                ints.slice_mut(shell_slices).assign(
                                    &shell_blocks[l_component_index]
                                        .clone()
                                        .permuted_axes(transpose_indices)
                                );
                            })
                        });
                        ints
                    }).collect::<Vec<_>>();

                intss
            }
        }
    }
}

pub(crate) use impl_shell_tuple_overlap;