1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
//! Management of shell tuples for generic $`n`$-centre integrals.
use std::marker::PhantomData;
use derive_builder::Builder;
use indexmap::{IndexMap, IndexSet};
use itertools::{izip, Itertools};
use nalgebra::{Point3, Vector3};
use ndarray::{Array, Array1, Array2, Dim};
use rayon::prelude::*;
use crate::basis::ao_integrals::{BasisSet, BasisShellContraction};
/// Structure to handle pre-computed properties of a tuple of shells consisting of
/// non-integration primitives.
#[derive(Builder)]
pub(crate) struct ShellTuple<'a, const RANK: usize, T: Clone> {
/// The data type of the overlap values from this shell tuple.
typ: PhantomData<T>,
/// The non-integration shells in this shell tuple. Each shell has an associated
/// boolean indicating if it is to be complex-conjugated in the integral
/// evalulation.
shells: [(&'a BasisShellContraction<f64, f64>, bool); RANK],
/// A fixed-size array indicating the angular-shape of this shell tuple.
///
/// Each element in the array gives the number of angular functions of the corresponding shell.
angular_shell_shape: [usize; RANK],
/// A fixed-size array indicating the primitive-shape of this shell tuple.
///
/// Each element in the array gives the number of Gaussian primitives of the
/// corresponding shell.
primitive_shell_shape: [usize; RANK],
// -----------------------------------------------
// Quantities common to all primitive combinations
// -----------------------------------------------
/// A fixed-size array containing the $`\mathbf{k}`$ vectors of the shells in this
/// shell tuple. Each $`\mathbf{k}`$ vector is appropriately signed to take into
/// account the complex conjugation pattern of the shell tuple.
ks: [Option<Vector3<f64>>; RANK],
/// The sum of all signed $`\mathbf{k}`$ vectors across all shells.
k: Vector3<f64>,
/// A fixed-size array containing the Cartesian origins of the shells in this shell
/// tuple.
rs: [&'a Point3<f64>; RANK],
/// A fixed-size array containing the angular momentum orders of the shells in this
/// shell tuple.
ns: [usize; RANK],
/// A fixed-size array containing conversion matrices to convert overlap values involving
/// shells that have specified pure orders from internally computed Cartesian orders to the
/// specified pure ones.
rl2carts: [Option<Array2<f64>>; RANK],
// -----------------------------------------------
// Quantities unique to each primitive combination
// -----------------------------------------------
/// A fixed-size array of arrays of non-integration primitive exponents.
///
/// This quantity is $`\zeta_g^{(k)}`$ appearing in Equations 81 and 83 of Honda, M.,
/// Sato, K. & Obara, S. Formulation of molecular integrals over Gaussian functions
/// treatable by both the Laplace and Fourier transforms of spatial operators by
/// using derivative of Fourier-kernel multiplied Gaussians. *The Journal of
/// Chemical Physics* **94**, 3790–3804 (1991),
/// [DOI](https://doi.org/10.1063/1.459751).
///
/// The i-th array in the vector is for the i-th shell. The j-th element in that
/// array then gives the exponent of the j-th primitive exponent of that shell.
zs: [Array1<&'a f64>; RANK],
/// An array containing the sums of all possible combinations of non-integration
/// primitive exponents across all shells.
///
/// This quantity is $`\zeta_G^{(k)}`$ defined in Equation 81 of Honda, M.,
/// Sato, K. & Obara, S. Formulation of molecular integrals over Gaussian functions
/// treatable by both the Laplace and Fourier transforms of spatial operators by
/// using derivative of Fourier-kernel multiplied Gaussians. *The Journal of
/// Chemical Physics* **94**, 3790–3804 (1991),
/// [DOI](https://doi.org/10.1063/1.459751).
///
/// This is a `RANK`-dimensional array. The element `zg[i, j, k, ...]`
/// gives the sum of the i-th primitive exponent on the first shell, the j-th
/// primitive exponent on the second shell, the k-th primitive exponent on the
/// third shell, and so on.
zg: Array<f64, Dim<[usize; RANK]>>,
/// An array containing the products of all possible combinations of
/// non-integration primitive exponents across all shells.
///
/// This is a `RANK`-dimensional array. The element `sd[i, j, k, ...]`
/// gives the product of the i-th primitive exponent on the first shell, the j-th
/// primitive exponent on the second shell, the k-th primitive exponent on the
/// third shell, and so on.
zd: Array<f64, Dim<[usize; RANK]>>,
/// A fixed-size array of arrays of contraction coefficients of non-integration
/// primitives.
///
/// The i-th array in the vector is for the i-th shell. The j-th element in that
/// array then gives the contraction coefficient of the j-th primitive exponent of
/// that shell.
ds: [Array1<&'a f64>; RANK],
/// An array containing the product of all possible combinations of non-integration
/// primitive coefficients across all shells.
///
/// This is a `RANK`-dimensional array. The element `dd[i, j, k, ...]` gives
/// the product of the i-th primitive's coefficient on the first shell, the j-th
/// primitive's coefficient on the second shell, the k-th primitive's coefficient
/// on the third shell, and so on.
dd: Array<f64, Dim<[usize; RANK]>>,
/// An array containing the exponent-weighted Cartesian centres of all possible
/// combinations of primitives across all shells.
///
/// This is a `RANK`-dimensional array. The element `rg[i, j, k, ...]` gives
/// the exponent-weighted Cartesian centre of the i-th primitive on the first shell,
/// the j-th primitive on the second shell, the k-th primitive on the third shell,
/// and so on.
rg: Array<Point3<f64>, Dim<[usize; RANK]>>,
/// A fixed-size array of arrays giving the optional quantity $`\mathbf{Q}_j`$ for
/// the j-th shell.
///
/// This quantity is defined in Equation 122 of Honda, M., Sato, K. & Obara, S.
/// Formulation of molecular integrals over Gaussian functions treatable by both
/// the Laplace and Fourier transforms of spatial operators by using derivative of
/// Fourier-kernel multiplied Gaussians. *The Journal of Chemical Physics* **94**,
/// 3790–3804 (1991), [DOI](https://doi.org/10.1063/1.459751). Since there are no
/// integration exponents in the current implementation of [`ShellTuple`], the
/// summation over $`v`$ in Equation 122 is not included. See also Equation 171 in
/// the reference.
///
/// The j-th array is for the j-th shell. Each array is a `RANK`-dimensional
/// array. The element `qs[j][i, m, k, ...]` gives the $`\mathbf{Q}_j`$ vector
/// defined using the i-th primitive exponent on the first shell, the m-th
/// primitive exponent on the second shell, the k-th primitive exponent on the
/// third shell, and so on. The exponent-combination dependence comes from the
/// $`\mathbf{R}_G`$ term.
///
/// If the j-th shell does not have a $`\mathbf{k}_j`$ plane-wave vector, then the
/// corresponding $`\mathbf{Q}_j`$ is set to `None`.
qs: [Option<Array<Vector3<f64>, Dim<[usize; RANK]>>>; RANK],
}
impl<'a, const RANK: usize, T: Clone> ShellTuple<'a, RANK, T> {
pub(crate) fn builder() -> ShellTupleBuilder<'a, RANK, T> {
ShellTupleBuilder::<RANK, T>::default()
}
/// The number of shells in this tuple.
fn rank(&self) -> usize {
RANK
}
/// The maximum angular momentum across all shells.
fn lmax(&self) -> u32 {
self.shells
.iter()
.map(|(bsc, _)| bsc.basis_shell().l)
.max()
.expect("The maximum angular momentum across all shells cannot be found.")
}
}
/// Structure to handle all possible shell tuples for a particular type of integral.
#[derive(Builder)]
pub(crate) struct ShellTupleCollection<'a, const RANK: usize, T: Clone> {
/// The data type of the overlap values from shell tuples in this collection.
typ: PhantomData<T>,
/// A fixed-size array containing basis sets, where each basis set at a certain shell position
/// contains all shells to be considered for that position.
basis_sets: [&'a BasisSet<f64, f64>; RANK],
/// The maximum angular momentum across all shells in this collection.
lmax: u32,
/// The complex-conjugation pattern across all shell positions in this collection.
ccs: [bool; RANK],
/// The numbers of shells across all shell positions in this collection.
n_shells: [usize; RANK],
/// The total numbers of angular functions across all shell positions in this collection. Each
/// value in the fixed-size array gives the total number of angular functions from all shells
/// at that position. In other words, this is the number of basis functions in the basis set at
/// that position.
angular_all_shell_shape: [usize; RANK],
}
impl<'a, const RANK: usize, T: Clone> ShellTupleCollection<'a, RANK, T> {
pub(crate) fn builder() -> ShellTupleCollectionBuilder<'a, RANK, T> {
ShellTupleCollectionBuilder::<RANK, T>::default()
}
/// The maximum angular momentum across all shell tuples.
fn lmax(&self) -> u32 {
self.lmax
}
/// The number of shells in each tuple in the collection.
fn rank(&self) -> usize {
RANK
}
/// Returns an iterator of the shell tuples unique with respect to permutations of the
/// constituent shells, taking into account complex conjugation, symmetry
/// transformation, and derivative patterns.
///
/// # Arguments
///
/// * `ls` - The derivative pattern.
fn unique_shell_tuples_iter<'it>(
&'it self,
ls: [usize; RANK],
) -> UniqueShellTupleIterator<'it, 'a, RANK, T>
where
'a: 'it,
{
// Example:
// ccs = [true, true, false, true, false]
// ls = [ 1, 1, 0, 2, 0]
// sym = [ 1, 0, 0, 0, 0] -- not considered for now
// nsh = [ 2, 1, 2, 2, 2]
// i.e. Each shell position has three possible shells.
// Each shell type is a tuple of its complex-conjugationness, its derivative
// order, and its length. The vector `shell_types` collects these tuples together.
// Example:
// shell_types = [
// (true, 1, 3), (true, 1, 4), (false, 0, 3), (true, 2, 3), (false, 0, 3)
// ].
// We see that there are four types here, and only shell positions that
// have the same type have permutation equivalence, i.e. [0], [1], [2, 4], [3].
let shell_types: Vec<(bool, usize, usize)> =
izip!(self.ccs, ls, self.n_shells).collect::<Vec<_>>();
// The map `shell_types_classified` keeps track of the unique shell types in this
// shell tuple and the associated shell positions as tuples.
// Example:
// shell_types_classified = {
// (true , 1, 2): {0},
// (true , 1, 1): {1},
// (false, 0, 2): {2, 4},
// (true , 2, 2): {3}
// }.
let mut shell_types_classified: IndexMap<(bool, usize, usize), IndexSet<usize>> =
IndexMap::new();
shell_types
.into_iter()
.enumerate()
.for_each(|(shell_index, shell_type)| {
shell_types_classified
.entry(shell_type)
.or_default()
.insert(shell_index);
});
// The map `shell_indices_unique_combinations` maps, for each shell type, the
// corresponding indices of shells of that type to the unique index combinations.
// Example:
// shell_type_unique_combinations = {
// [0] : [[0], [1]],
// [1] : [[0]],
// [2, 4]: [[0, 0], [0, 1], [1, 1]],
// [3] : [[0], [1]],
// }
let shell_indices_unique_combinations = shell_types_classified
.iter()
.map(|(shell_type, shell_indices)| {
(
shell_indices.iter().collect::<Vec<_>>(),
(0..shell_type.2)
.combinations_with_replacement(shell_indices.len())
.collect::<Vec<_>>(),
)
})
.collect::<IndexMap<_, _>>();
// Example:
// sis = [0, 1, 2, 4, 3]
// gg = [
// [[0], [1]],
// [[0]],
// [[0, 0], [0, 1], [1, 1]],
// [[0], [1]]
// ]
// `order` gives the indices to sort `sis`.
// order = [0, 1, 2, 4, 3]
let sis = shell_indices_unique_combinations
.keys()
.flatten()
.collect::<Vec<_>>();
let mut order = (0..sis.len()).collect::<Vec<_>>();
order.sort_by_key(|&i| &sis[i]);
let gg = shell_indices_unique_combinations
.into_values()
.collect::<Vec<_>>();
// `unordered_recombined_shell_indices` forms all possible combinations of
// shell indices across all different shell types.
// Example:
// unordered_recombined_shell_indices = [
// [[0], [0], [0, 0], [0]],
// [[0], [0], [0, 0], [1]],
// [[0], [0], [0, 1], [0]],
// [[0], [0], [0, 1], [1]],
// [[0], [0], [1, 1], [0]],
// [[0], [0], [1, 1], [1]],
// ...
// ] (12 = 2 * 1 * 3 * 2 terms in total)
let unordered_recombined_shell_indices = gg
.into_iter()
.multi_cartesian_product()
.into_iter()
.collect::<Vec<_>>();
log::debug!("Rank-{RANK} shell tuple collection information:");
log::debug!(
" Total number of unique tuples: {}",
unordered_recombined_shell_indices.len()
);
UniqueShellTupleIterator::<'it, 'a, RANK, T> {
index: 0,
shell_order: order,
unordered_recombined_shell_indices,
stc: &self,
}
}
}
/// Iterator over unique shell tuples in a collection.
struct UniqueShellTupleIterator<'it, 'a: 'it, const RANK: usize, T: Clone> {
/// The current index of iteration.
index: usize,
/// Indices to reorder shell positions in each flattened `Vec<Vec<usize>>` of
/// [`Self::unordered_recombined_shell_indices`] to put them in the right place.
shell_order: Vec<usize>,
/// All possible combinations of shell indices across all different shell types. Each
/// `Vec<Vec<usize>>` gives one unique shell tuple combination. Each `Vec<usize>` gives the
/// indices of shells within a shell type.
unordered_recombined_shell_indices: Vec<Vec<Vec<usize>>>,
/// The shell tuple collection with respect to which this iterator is defined.
stc: &'it ShellTupleCollection<'a, RANK, T>,
}
/// Implements methods for shell tuples of a specified pattern.
macro_rules! impl_shell_tuple {
( $RANK:ident, <$($shell_name:ident),+> ) => {
const $RANK: usize = count_exprs!($($shell_name),+);
impl<'it, 'a: 'it, T: Clone> Iterator for UniqueShellTupleIterator<'it, 'a, $RANK, T> {
type Item = (ShellTuple<'a, $RANK, T>, [usize; $RANK], Vec<[usize; $RANK]>);
fn next(&mut self) -> Option<Self::Item> {
let unordered_shell_index = self.unordered_recombined_shell_indices.get(self.index)?;
// Now, for each term in `unordered_recombined_shell_indices`, we need to
// flatten and then reorder to put the shell indices at the correct positions. This
// gives `ordered_shell_index` which gives a unique shell tuple permutation.
let flattened_unordered_shell_index = unordered_shell_index
.clone()
.into_iter()
.flatten()
.collect::<Vec<_>>();
let mut ordered_shell_index_iter = self.shell_order.iter().map(|i| {
flattened_unordered_shell_index[*i]
});
$(
let $shell_name = ordered_shell_index_iter
.next()
.expect("Shell index out of range.");
)+
let ordered_shell_index = [$($shell_name),+];
let mut ordered_shell_index_iter = ordered_shell_index.iter().enumerate();
$(
let $shell_name = ordered_shell_index_iter
.next()
.map(|(shell_index, &i)| {
(&self.stc.basis_sets[shell_index][i], self.stc.ccs[shell_index])
})
.expect("Shell index out of range.");
)+
let shell_tuple = build_shell_tuple!($($shell_name),+; T);
// For each term in `unordered_recombined_shell_indices`, all unique
// permutations of each sub-vector gives an equivalent permutation.
// Example: consider [[0], [0], [0, 1], [1]]. This gives the following
// equivalent permutations:
// [[0], [0], [0, 1], [1]]
// [[0], [0], [1, 0], [1]]
// There are two of them (1 * 1 * 2 * 1).
// Each equivalent permutation undergoes the same 'flattening' and
// 'reordering' process as for the unique term.
let equiv_perms = unordered_shell_index
.iter()
.map(|y| y.into_iter().permutations(y.len()).into_iter().unique())
.multi_cartesian_product()
.into_iter()
.map(|x| {
let mut equiv_perm_iter = x.into_iter().flatten().cloned();
$(
let $shell_name = equiv_perm_iter
.next()
.expect("Shell index out of range.");
)+
[$($shell_name),+]
})
.collect::<Vec<_>>();
log::debug!("Generated unique permutation: {ordered_shell_index:?}");
self.index += 1;
Some((shell_tuple, ordered_shell_index, equiv_perms))
}
}
crate::integrals::overlap::impl_shell_tuple_overlap!($RANK, <$($shell_name),+>);
}
}
/// Constructs a shell tuple given a pattern and a matching sequence of shells.
///
/// # Patterns
///
/// * `$shell` - A tuple `(shell, cc)` where `shell` is a [`BasisShellContraction`] and `cc` a
/// boolean indicating if the shell is complex-conjugated.
/// * `$ty` - The data type for the overlap values from this shell tuple.
macro_rules! build_shell_tuple {
( $($shell:expr),+; $ty:ty ) => {
{
use std::marker::PhantomData;
use itertools::Itertools;
use ndarray::{Array, Array1, Dim};
use nalgebra::{Point3, Vector3};
use crate::angmom::sh_conversion::sh_rl2cart_mat;
use crate::basis::ao::CartOrder;
use crate::integrals::shell_tuple::ShellTuple;
const RANK: usize = count_exprs!($($shell),+);
let zg = {
let arr_vec = [$(
$shell.0.contraction.primitives.iter().map(|(e, _)| e).collect::<Vec<_>>()
),+].into_iter()
.multi_cartesian_product()
.map(|s| s.into_iter().sum()).collect::<Vec<_>>();
let arr = Array::<f64, Dim<[usize; RANK]>>::from_shape_vec(
($($shell.0.contraction.primitives.len()),+), arr_vec
).unwrap_or_else(|err| {
log::error!("{err}");
panic!("Unable to construct the {RANK}-dimensional array of exponent sums.")
});
arr
};
let rg = {
let arr_vec = [$(
$shell
.0
.contraction.primitives
.iter()
.map(|(e, _)| *e * $shell.0.cart_origin).collect::<Vec<_>>()
),+].into_iter()
.multi_cartesian_product()
.map(|s| {
s.into_iter()
.fold(Point3::origin(), |acc, r| acc + r.coords)
})
.collect::<Vec<_>>();
let arr = Array::<Point3<f64>, Dim<[usize; RANK]>>::from_shape_vec(
($($shell.0.contraction.primitives.len()),+), arr_vec
).unwrap_or_else(|err| {
log::error!("{err}");
panic!("Unable to construct the {RANK}-dimensional array of exponent-weighted centres.")
}) / &zg;
arr
};
let qs = [$(
$shell.0.k().map(|_| rg.map(|r| (r - $shell.0.cart_origin().coords).coords))
),+];
ShellTuple::<RANK, $ty>::builder()
.typ(PhantomData)
.shells([$($shell),+])
.angular_shell_shape([$($shell.0.basis_shell().n_funcs()),+])
.primitive_shell_shape([$($shell.0.contraction_length()),+])
.rs([$($shell.0.cart_origin()),+])
.ks([$(
if $shell.1 {
// true, hence -(-) = +
$shell.0.k().copied()
} else {
// false, hence -
$shell.0.k().copied().map(|k| -k)
}
),+])
.k([$(
if $shell.1 {
// true, hence -(-) = +
$shell.0.k().copied()
} else {
// false, hence -
$shell.0.k().copied().map(|k| -k)
}
),+]
.into_iter()
.filter_map(|k| k)
.fold(Vector3::zeros(), |acc, k| acc + k))
.ns([$(
usize::try_from($shell.0.basis_shell().l)
.expect("Unable to convert an angular momentum `l` value to `usize`.")
),+])
.rl2carts([$(
match &$shell.0.basis_shell().shell_order {
ShellOrder::Cart(_) => None,
ShellOrder::Pure(po) => Some(sh_rl2cart_mat(
po.lpure,
po.lpure,
&CartOrder::lex(po.lpure),
true,
&po
)),
}
),+])
.zs([$(
Array1::from_iter($shell.0.contraction.primitives.iter().map(|(e, _)| e))
),+])
.zg(zg)
.zd({
let arr_vec = [$(
$shell.0.contraction.primitives.iter().map(|(e, _)| e).collect::<Vec<_>>()
),+].into_iter()
.multi_cartesian_product()
.map(|s| s.into_iter().fold(1.0, |acc, e| acc * e)).collect::<Vec<_>>();
let arr = Array::<f64, Dim<[usize; RANK]>>::from_shape_vec(
($($shell.0.contraction.primitives.len()),+), arr_vec
).unwrap_or_else(|err| {
log::error!("{err}");
panic!("Unable to construct the {RANK}-dimensional array of exponent products.")
});
arr
})
.ds([$(
Array1::from_iter($shell.0.contraction.primitives.iter().map(|(_, c)| c))
),+])
.dd({
let arr_vec = [$(
$shell.0.contraction.primitives.iter().map(|(_, c)| c).collect::<Vec<_>>()
),+].into_iter()
.multi_cartesian_product()
.map(|s| s.into_iter().fold(1.0, |acc, c| acc * c)).collect::<Vec<_>>();
let arr = Array::<f64, Dim<[usize; RANK]>>::from_shape_vec(
($($shell.0.contraction.primitives.len()),+), arr_vec
).unwrap_or_else(|err| {
log::error!("{err}");
panic!("Unable to construct the {RANK}-dimensional array of coefficient products.")
});
arr
})
.rg(rg)
.qs(qs)
.build()
.unwrap_or_else(|_| panic!("Unable to construct a shell tuple of rank {RANK}."))
}
}
}
/// Constructs a shell tuple collection given a pattern and a matching sequence of basis sets.
///
/// # Patterns
///
/// * `$shell_name` - An identifier for a shell position.
/// * `$shell_cc` - A boolean indicating if the shell position is complex-conjugated.
/// * `$basisset` - A [`BasisSet`] giving all shells at the corresponding shell position.
/// * `$ty` - The data type for the overlap values from this shell tuple collection.
macro_rules! build_shell_tuple_collection {
( <$($shell_name:ident),+>; $($shell_cc:expr),+; $($basisset:expr),+; $ty:ty ) => {
{
use std::marker::PhantomData;
use crate::integrals::shell_tuple::ShellTupleCollection;
const RANK: usize = count_exprs!($($shell_name),+);
let lmax: u32 = *[$(
$basisset.all_shells().map(|shell| shell.basis_shell.l).collect::<Vec<_>>()
),+].iter()
.flatten()
.max()
.expect("Unable to determine the maximum angular momentum across all shells.");
let n_shells = [$($basisset.n_shells()),+];
log::debug!("Rank-{RANK} shell tuple collection construction:");
log::debug!(
" Total number of tuples: {}",
n_shells.iter().product::<usize>()
);
ShellTupleCollection::<RANK, $ty>::builder()
.typ(PhantomData)
.basis_sets([$($basisset),+])
.lmax(lmax)
.ccs([$($shell_cc),+])
.n_shells(n_shells)
.angular_all_shell_shape([$(
$basisset
.all_shells()
.map(|shell| shell.basis_shell().n_funcs())
.sum::<usize>()
),+])
.build()
.unwrap_or_else(|_| panic!("Unable to construct a shell tuple collection of rank {RANK}."))
}
}
}
use duplicate::duplicate_item;
use factorial::DoubleFactorial;
use log;
use ndarray::{s, Zip};
use ndarray_einsum_beta::*;
use num_complex::Complex;
use num_traits::ToPrimitive;
use crate::basis::ao::{CartOrder, ShellOrder};
type C128 = Complex<f64>;
impl_shell_tuple![RANK_2, <s1, s2>];
impl_shell_tuple![RANK_3, <s1, s2, s3>];
impl_shell_tuple![RANK_4, <s1, s2, s3, s4>];
impl_shell_tuple![RANK_5, <s1, s2, s3, s4, s5>];
pub(crate) use {build_shell_tuple, build_shell_tuple_collection};
#[cfg(test)]
#[path = "shell_tuple_tests.rs"]
mod shell_tuple_tests;
#[cfg(test)]
#[path = "shell_tuple_collection_tests.rs"]
mod shell_tuple_collection_tests;