1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
//! Management of shell tuples for generic $`n`$-centre integrals.

use std::marker::PhantomData;

use derive_builder::Builder;
use indexmap::{IndexMap, IndexSet};
use itertools::{izip, Itertools};
use nalgebra::{Point3, Vector3};
use ndarray::{Array, Array1, Array2, Dim};
use rayon::prelude::*;

use crate::basis::ao_integrals::{BasisSet, BasisShellContraction};

/// Structure to handle pre-computed properties of a tuple of shells consisting of
/// non-integration primitives.
#[derive(Builder)]
pub(crate) struct ShellTuple<'a, const RANK: usize, T: Clone> {
    /// The data type of the overlap values from this shell tuple.
    typ: PhantomData<T>,

    /// The non-integration shells in this shell tuple. Each shell has an associated
    /// boolean indicating if it is to be complex-conjugated in the integral
    /// evalulation.
    shells: [(&'a BasisShellContraction<f64, f64>, bool); RANK],

    /// A fixed-size array indicating the angular-shape of this shell tuple.
    ///
    /// Each element in the array gives the number of angular functions of the corresponding shell.
    angular_shell_shape: [usize; RANK],

    /// A fixed-size array indicating the primitive-shape of this shell tuple.
    ///
    /// Each element in the array gives the number of Gaussian primitives of the
    /// corresponding shell.
    primitive_shell_shape: [usize; RANK],

    // -----------------------------------------------
    // Quantities common to all primitive combinations
    // -----------------------------------------------
    /// A fixed-size array containing the $`\mathbf{k}`$ vectors of the shells in this
    /// shell tuple. Each $`\mathbf{k}`$ vector is appropriately signed to take into
    /// account the complex conjugation pattern of the shell tuple.
    ks: [Option<Vector3<f64>>; RANK],

    /// The sum of all signed $`\mathbf{k}`$ vectors across all shells.
    k: Vector3<f64>,

    /// A fixed-size array containing the Cartesian origins of the shells in this shell
    /// tuple.
    rs: [&'a Point3<f64>; RANK],

    /// A fixed-size array containing the angular momentum orders of the shells in this
    /// shell tuple.
    ns: [usize; RANK],

    /// A fixed-size array containing conversion matrices to convert overlap values involving
    /// shells that have specified pure orders from internally computed Cartesian orders to the
    /// specified pure ones.
    rl2carts: [Option<Array2<f64>>; RANK],

    // -----------------------------------------------
    // Quantities unique to each primitive combination
    // -----------------------------------------------
    /// A fixed-size array of arrays of non-integration primitive exponents.
    ///
    /// This quantity is $`\zeta_g^{(k)}`$ appearing in Equations 81 and 83 of Honda, M.,
    /// Sato, K. & Obara, S. Formulation of molecular integrals over Gaussian functions
    /// treatable by both the Laplace and Fourier transforms of spatial operators by
    /// using derivative of Fourier-kernel multiplied Gaussians. *The Journal of
    /// Chemical Physics* **94**, 3790–3804 (1991),
    /// [DOI](https://doi.org/10.1063/1.459751).
    ///
    /// The i-th array in the vector is for the i-th shell. The j-th element in that
    /// array then gives the exponent of the j-th primitive exponent of that shell.
    zs: [Array1<&'a f64>; RANK],

    /// An array containing the sums of all possible combinations of non-integration
    /// primitive exponents across all shells.
    ///
    /// This quantity is $`\zeta_G^{(k)}`$ defined in Equation 81 of Honda, M.,
    /// Sato, K. & Obara, S. Formulation of molecular integrals over Gaussian functions
    /// treatable by both the Laplace and Fourier transforms of spatial operators by
    /// using derivative of Fourier-kernel multiplied Gaussians. *The Journal of
    /// Chemical Physics* **94**, 3790–3804 (1991),
    /// [DOI](https://doi.org/10.1063/1.459751).
    ///
    /// This is a `RANK`-dimensional array. The element `zg[i, j, k, ...]`
    /// gives the sum of the i-th primitive exponent on the first shell, the j-th
    /// primitive exponent on the second shell, the k-th primitive exponent on the
    /// third shell, and so on.
    zg: Array<f64, Dim<[usize; RANK]>>,

    /// An array containing the products of all possible combinations of
    /// non-integration primitive exponents across all shells.
    ///
    /// This is a `RANK`-dimensional array. The element `sd[i, j, k, ...]`
    /// gives the product of the i-th primitive exponent on the first shell, the j-th
    /// primitive exponent on the second shell, the k-th primitive exponent on the
    /// third shell, and so on.
    zd: Array<f64, Dim<[usize; RANK]>>,

    /// A fixed-size array of arrays of contraction coefficients of non-integration
    /// primitives.
    ///
    /// The i-th array in the vector is for the i-th shell. The j-th element in that
    /// array then gives the contraction coefficient of the j-th primitive exponent of
    /// that shell.
    ds: [Array1<&'a f64>; RANK],

    /// An array containing the product of all possible combinations of non-integration
    /// primitive coefficients across all shells.
    ///
    /// This is a `RANK`-dimensional array. The element `dd[i, j, k, ...]` gives
    /// the product of the i-th primitive's coefficient on the first shell, the j-th
    /// primitive's coefficient on the second shell, the k-th primitive's coefficient
    /// on the third shell, and so on.
    dd: Array<f64, Dim<[usize; RANK]>>,

    /// An array containing the exponent-weighted Cartesian centres of all possible
    /// combinations of primitives across all shells.
    ///
    /// This is a `RANK`-dimensional array. The element `rg[i, j, k, ...]` gives
    /// the exponent-weighted Cartesian centre of the i-th primitive on the first shell,
    /// the j-th primitive on the second shell, the k-th primitive on the third shell,
    /// and so on.
    rg: Array<Point3<f64>, Dim<[usize; RANK]>>,

    /// A fixed-size array of arrays giving the optional quantity $`\mathbf{Q}_j`$ for
    /// the j-th shell.
    ///
    /// This quantity is defined in Equation 122 of Honda, M., Sato, K. & Obara, S.
    /// Formulation of molecular integrals over Gaussian functions treatable by both
    /// the Laplace and Fourier transforms of spatial operators by using derivative of
    /// Fourier-kernel multiplied Gaussians. *The Journal of Chemical Physics* **94**,
    /// 3790–3804 (1991), [DOI](https://doi.org/10.1063/1.459751). Since there are no
    /// integration exponents in the current implementation of [`ShellTuple`], the
    /// summation over $`v`$ in Equation 122 is not included. See also Equation 171 in
    /// the reference.
    ///
    /// The j-th array is for the j-th shell. Each array is a `RANK`-dimensional
    /// array. The element `qs[j][i, m, k, ...]` gives the $`\mathbf{Q}_j`$ vector
    /// defined using the i-th primitive exponent on the first shell, the m-th
    /// primitive exponent on the second shell, the k-th primitive exponent on the
    /// third shell, and so on. The exponent-combination dependence comes from the
    /// $`\mathbf{R}_G`$ term.
    ///
    /// If the j-th shell does not have a $`\mathbf{k}_j`$ plane-wave vector, then the
    /// corresponding $`\mathbf{Q}_j`$ is set to `None`.
    qs: [Option<Array<Vector3<f64>, Dim<[usize; RANK]>>>; RANK],
}

impl<'a, const RANK: usize, T: Clone> ShellTuple<'a, RANK, T> {
    pub(crate) fn builder() -> ShellTupleBuilder<'a, RANK, T> {
        ShellTupleBuilder::<RANK, T>::default()
    }

    /// The number of shells in this tuple.
    fn rank(&self) -> usize {
        RANK
    }

    /// The maximum angular momentum across all shells.
    fn lmax(&self) -> u32 {
        self.shells
            .iter()
            .map(|(bsc, _)| bsc.basis_shell().l)
            .max()
            .expect("The maximum angular momentum across all shells cannot be found.")
    }
}

/// Structure to handle all possible shell tuples for a particular type of integral.
#[derive(Builder)]
pub(crate) struct ShellTupleCollection<'a, const RANK: usize, T: Clone> {
    /// The data type of the overlap values from shell tuples in this collection.
    typ: PhantomData<T>,

    /// A fixed-size array containing basis sets, where each basis set at a certain shell position
    /// contains all shells to be considered for that position.
    basis_sets: [&'a BasisSet<f64, f64>; RANK],

    /// The maximum angular momentum across all shells in this collection.
    lmax: u32,

    /// The complex-conjugation pattern across all shell positions in this collection.
    ccs: [bool; RANK],

    /// The numbers of shells across all shell positions in this collection.
    n_shells: [usize; RANK],

    /// The total numbers of angular functions across all shell positions in this collection. Each
    /// value in the fixed-size array gives the total number of angular functions from all shells
    /// at that position. In other words, this is the number of basis functions in the basis set at
    /// that position.
    angular_all_shell_shape: [usize; RANK],
}

impl<'a, const RANK: usize, T: Clone> ShellTupleCollection<'a, RANK, T> {
    pub(crate) fn builder() -> ShellTupleCollectionBuilder<'a, RANK, T> {
        ShellTupleCollectionBuilder::<RANK, T>::default()
    }

    /// The maximum angular momentum across all shell tuples.
    fn lmax(&self) -> u32 {
        self.lmax
    }

    /// The number of shells in each tuple in the collection.
    fn rank(&self) -> usize {
        RANK
    }

    /// Returns an iterator of the shell tuples unique with respect to permutations of the
    /// constituent shells, taking into account complex conjugation, symmetry
    /// transformation, and derivative patterns.
    ///
    /// # Arguments
    ///
    /// * `ls` - The derivative pattern.
    fn unique_shell_tuples_iter<'it>(
        &'it self,
        ls: [usize; RANK],
    ) -> UniqueShellTupleIterator<'it, 'a, RANK, T>
    where
        'a: 'it,
    {
        // Example:
        //     ccs = [true, true, false, true, false]
        //     ls  = [   1,    1,     0,    2,     0]
        //     sym = [   1,    0,     0,    0,     0] -- not considered for now
        //     nsh = [   2,    1,     2,    2,     2]
        //           i.e. Each shell position has three possible shells.

        // Each shell type is a tuple of its complex-conjugationness, its derivative
        // order, and its length. The vector `shell_types` collects these tuples together.
        // Example:
        // shell_types = [
        //     (true, 1, 3), (true, 1, 4), (false, 0, 3), (true, 2, 3), (false, 0, 3)
        // ].
        // We see that there are four types here, and only shell positions that
        // have the same type have permutation equivalence, i.e. [0], [1], [2, 4], [3].
        let shell_types: Vec<(bool, usize, usize)> =
            izip!(self.ccs, ls, self.n_shells).collect::<Vec<_>>();

        // The map `shell_types_classified` keeps track of the unique shell types in this
        // shell tuple and the associated shell positions as tuples.
        // Example:
        // shell_types_classified = {
        //     (true , 1, 2): {0},
        //     (true , 1, 1): {1},
        //     (false, 0, 2): {2, 4},
        //     (true , 2, 2): {3}
        // }.
        let mut shell_types_classified: IndexMap<(bool, usize, usize), IndexSet<usize>> =
            IndexMap::new();
        shell_types
            .into_iter()
            .enumerate()
            .for_each(|(shell_index, shell_type)| {
                shell_types_classified
                    .entry(shell_type)
                    .or_default()
                    .insert(shell_index);
            });

        // The map `shell_indices_unique_combinations` maps, for each shell type, the
        // corresponding indices of shells of that type to the unique index combinations.
        // Example:
        // shell_type_unique_combinations = {
        //     [0]   : [[0], [1]],
        //     [1]   : [[0]],
        //     [2, 4]: [[0, 0], [0, 1], [1, 1]],
        //     [3]   : [[0], [1]],
        // }
        let shell_indices_unique_combinations = shell_types_classified
            .iter()
            .map(|(shell_type, shell_indices)| {
                (
                    shell_indices.iter().collect::<Vec<_>>(),
                    (0..shell_type.2)
                        .combinations_with_replacement(shell_indices.len())
                        .collect::<Vec<_>>(),
                )
            })
            .collect::<IndexMap<_, _>>();

        // Example:
        // sis = [0, 1, 2, 4, 3]
        // gg = [
        //     [[0], [1]],
        //     [[0]],
        //     [[0, 0], [0, 1], [1, 1]],
        //     [[0], [1]]
        // ]
        // `order` gives the indices to sort `sis`.
        // order = [0, 1, 2, 4, 3]
        let sis = shell_indices_unique_combinations
            .keys()
            .flatten()
            .collect::<Vec<_>>();
        let mut order = (0..sis.len()).collect::<Vec<_>>();
        order.sort_by_key(|&i| &sis[i]);
        let gg = shell_indices_unique_combinations
            .into_values()
            .collect::<Vec<_>>();

        // `unordered_recombined_shell_indices` forms all possible combinations of
        // shell indices across all different shell types.
        // Example:
        // unordered_recombined_shell_indices = [
        //     [[0], [0], [0, 0], [0]],
        //     [[0], [0], [0, 0], [1]],
        //     [[0], [0], [0, 1], [0]],
        //     [[0], [0], [0, 1], [1]],
        //     [[0], [0], [1, 1], [0]],
        //     [[0], [0], [1, 1], [1]],
        //     ...
        // ] (12 = 2 * 1 * 3 * 2 terms in total)
        let unordered_recombined_shell_indices = gg
            .into_iter()
            .multi_cartesian_product()
            .into_iter()
            .collect::<Vec<_>>();

        log::debug!("Rank-{RANK} shell tuple collection information:");
        log::debug!(
            "  Total number of unique tuples: {}",
            unordered_recombined_shell_indices.len()
        );

        UniqueShellTupleIterator::<'it, 'a, RANK, T> {
            index: 0,
            shell_order: order,
            unordered_recombined_shell_indices,
            stc: &self,
        }
    }
}

/// Iterator over unique shell tuples in a collection.
struct UniqueShellTupleIterator<'it, 'a: 'it, const RANK: usize, T: Clone> {
    /// The current index of iteration.
    index: usize,

    /// Indices to reorder shell positions in each flattened `Vec<Vec<usize>>` of
    /// [`Self::unordered_recombined_shell_indices`] to put them in the right place.
    shell_order: Vec<usize>,

    /// All possible combinations of shell indices across all different shell types. Each
    /// `Vec<Vec<usize>>` gives one unique shell tuple combination. Each `Vec<usize>` gives the
    /// indices of shells within a shell type.
    unordered_recombined_shell_indices: Vec<Vec<Vec<usize>>>,

    /// The shell tuple collection with respect to which this iterator is defined.
    stc: &'it ShellTupleCollection<'a, RANK, T>,
}

/// Implements methods for shell tuples of a specified pattern.
macro_rules! impl_shell_tuple {
    ( $RANK:ident, <$($shell_name:ident),+> ) => {
        const $RANK: usize = count_exprs!($($shell_name),+);

        impl<'it, 'a: 'it, T: Clone> Iterator for UniqueShellTupleIterator<'it, 'a, $RANK, T> {
            type Item = (ShellTuple<'a, $RANK, T>, [usize; $RANK], Vec<[usize; $RANK]>);

            fn next(&mut self) -> Option<Self::Item> {
                let unordered_shell_index = self.unordered_recombined_shell_indices.get(self.index)?;

                // Now, for each term in `unordered_recombined_shell_indices`, we need to
                // flatten and then reorder to put the shell indices at the correct positions. This
                // gives `ordered_shell_index` which gives a unique shell tuple permutation.
                let flattened_unordered_shell_index = unordered_shell_index
                    .clone()
                    .into_iter()
                    .flatten()
                    .collect::<Vec<_>>();
                let mut ordered_shell_index_iter = self.shell_order.iter().map(|i| {
                    flattened_unordered_shell_index[*i]
                });
                $(
                    let $shell_name = ordered_shell_index_iter
                        .next()
                        .expect("Shell index out of range.");
                )+
                let ordered_shell_index = [$($shell_name),+];

                let mut ordered_shell_index_iter = ordered_shell_index.iter().enumerate();
                $(
                    let $shell_name = ordered_shell_index_iter
                        .next()
                        .map(|(shell_index, &i)| {
                            (&self.stc.basis_sets[shell_index][i], self.stc.ccs[shell_index])
                        })
                        .expect("Shell index out of range.");
                )+
                let shell_tuple = build_shell_tuple!($($shell_name),+; T);

                // For each term in `unordered_recombined_shell_indices`, all unique
                // permutations of each sub-vector gives an equivalent permutation.
                // Example: consider [[0], [0], [0, 1], [1]]. This gives the following
                // equivalent permutations:
                //   [[0], [0], [0, 1], [1]]
                //   [[0], [0], [1, 0], [1]]
                // There are two of them (1 * 1 * 2 * 1).
                // Each equivalent permutation undergoes the same 'flattening' and
                // 'reordering' process as for the unique term.
                let equiv_perms = unordered_shell_index
                    .iter()
                    .map(|y| y.into_iter().permutations(y.len()).into_iter().unique())
                    .multi_cartesian_product()
                    .into_iter()
                    .map(|x| {
                        let mut equiv_perm_iter = x.into_iter().flatten().cloned();
                        $(
                            let $shell_name = equiv_perm_iter
                                .next()
                                .expect("Shell index out of range.");
                        )+
                        [$($shell_name),+]
                    })
                    .collect::<Vec<_>>();

                log::debug!("Generated unique permutation: {ordered_shell_index:?}");
                self.index += 1;
                Some((shell_tuple, ordered_shell_index, equiv_perms))
            }
        }

        crate::integrals::overlap::impl_shell_tuple_overlap!($RANK, <$($shell_name),+>);
    }
}

/// Constructs a shell tuple given a pattern and a matching sequence of shells.
///
/// # Patterns
///
/// * `$shell` - A tuple `(shell, cc)` where `shell` is a [`BasisShellContraction`] and `cc` a
/// boolean indicating if the shell is complex-conjugated.
/// * `$ty` - The data type for the overlap values from this shell tuple.
macro_rules! build_shell_tuple {
    ( $($shell:expr),+; $ty:ty ) => {
        {
            use std::marker::PhantomData;

            use itertools::Itertools;
            use ndarray::{Array, Array1, Dim};
            use nalgebra::{Point3, Vector3};

            use crate::angmom::sh_conversion::sh_rl2cart_mat;
            use crate::basis::ao::CartOrder;
            use crate::integrals::shell_tuple::ShellTuple;

            const RANK: usize = count_exprs!($($shell),+);

            let zg = {
                let arr_vec = [$(
                    $shell.0.contraction.primitives.iter().map(|(e, _)| e).collect::<Vec<_>>()
                ),+].into_iter()
                    .multi_cartesian_product()
                    .map(|s| s.into_iter().sum()).collect::<Vec<_>>();
                let arr = Array::<f64, Dim<[usize; RANK]>>::from_shape_vec(
                    ($($shell.0.contraction.primitives.len()),+), arr_vec
                ).unwrap_or_else(|err| {
                    log::error!("{err}");
                    panic!("Unable to construct the {RANK}-dimensional array of exponent sums.")
                });
                arr
            };

            let rg = {
                let arr_vec = [$(
                    $shell
                        .0
                        .contraction.primitives
                        .iter()
                        .map(|(e, _)| *e * $shell.0.cart_origin).collect::<Vec<_>>()
                ),+].into_iter()
                    .multi_cartesian_product()
                    .map(|s| {
                        s.into_iter()
                            .fold(Point3::origin(), |acc, r| acc + r.coords)
                    })
                    .collect::<Vec<_>>();
                let arr = Array::<Point3<f64>, Dim<[usize; RANK]>>::from_shape_vec(
                    ($($shell.0.contraction.primitives.len()),+), arr_vec
                ).unwrap_or_else(|err| {
                    log::error!("{err}");
                    panic!("Unable to construct the {RANK}-dimensional array of exponent-weighted centres.")
                }) / &zg;
                arr
            };

            let qs = [$(
                $shell.0.k().map(|_| rg.map(|r| (r - $shell.0.cart_origin().coords).coords))
            ),+];

            ShellTuple::<RANK, $ty>::builder()
                .typ(PhantomData)
                .shells([$($shell),+])
                .angular_shell_shape([$($shell.0.basis_shell().n_funcs()),+])
                .primitive_shell_shape([$($shell.0.contraction_length()),+])
                .rs([$($shell.0.cart_origin()),+])
                .ks([$(
                    if $shell.1 {
                        // true, hence -(-) = +
                        $shell.0.k().copied()
                    } else {
                        // false, hence -
                        $shell.0.k().copied().map(|k| -k)
                    }
                ),+])
                .k([$(
                    if $shell.1 {
                        // true, hence -(-) = +
                        $shell.0.k().copied()
                    } else {
                        // false, hence -
                        $shell.0.k().copied().map(|k| -k)
                    }
                ),+]
                    .into_iter()
                    .filter_map(|k| k)
                    .fold(Vector3::zeros(), |acc, k| acc + k))
                .ns([$(
                    usize::try_from($shell.0.basis_shell().l)
                        .expect("Unable to convert an angular momentum `l` value to `usize`.")
                ),+])
                .rl2carts([$(
                    match &$shell.0.basis_shell().shell_order {
                        ShellOrder::Cart(_) => None,
                        ShellOrder::Pure(po) => Some(sh_rl2cart_mat(
                            po.lpure,
                            po.lpure,
                            &CartOrder::lex(po.lpure),
                            true,
                            &po
                        )),
                    }
                ),+])
                .zs([$(
                    Array1::from_iter($shell.0.contraction.primitives.iter().map(|(e, _)| e))
                ),+])
                .zg(zg)
                .zd({
                    let arr_vec = [$(
                        $shell.0.contraction.primitives.iter().map(|(e, _)| e).collect::<Vec<_>>()
                    ),+].into_iter()
                        .multi_cartesian_product()
                        .map(|s| s.into_iter().fold(1.0, |acc, e| acc * e)).collect::<Vec<_>>();
                    let arr = Array::<f64, Dim<[usize; RANK]>>::from_shape_vec(
                        ($($shell.0.contraction.primitives.len()),+), arr_vec
                    ).unwrap_or_else(|err| {
                        log::error!("{err}");
                        panic!("Unable to construct the {RANK}-dimensional array of exponent products.")
                    });
                    arr
                })
                .ds([$(
                    Array1::from_iter($shell.0.contraction.primitives.iter().map(|(_, c)| c))
                ),+])
                .dd({
                    let arr_vec = [$(
                        $shell.0.contraction.primitives.iter().map(|(_, c)| c).collect::<Vec<_>>()
                    ),+].into_iter()
                        .multi_cartesian_product()
                        .map(|s| s.into_iter().fold(1.0, |acc, c| acc * c)).collect::<Vec<_>>();
                    let arr = Array::<f64, Dim<[usize; RANK]>>::from_shape_vec(
                        ($($shell.0.contraction.primitives.len()),+), arr_vec
                    ).unwrap_or_else(|err| {
                        log::error!("{err}");
                        panic!("Unable to construct the {RANK}-dimensional array of coefficient products.")
                    });
                    arr
                })
                .rg(rg)
                .qs(qs)
                .build()
                .unwrap_or_else(|_| panic!("Unable to construct a shell tuple of rank {RANK}."))
        }
    }
}

/// Constructs a shell tuple collection given a pattern and a matching sequence of basis sets.
///
/// # Patterns
///
/// * `$shell_name` - An identifier for a shell position.
/// * `$shell_cc` - A boolean indicating if the shell position is complex-conjugated.
/// * `$basisset` - A [`BasisSet`] giving all shells at the corresponding shell position.
/// * `$ty` - The data type for the overlap values from this shell tuple collection.
macro_rules! build_shell_tuple_collection {
    ( <$($shell_name:ident),+>; $($shell_cc:expr),+; $($basisset:expr),+; $ty:ty ) => {
        {
            use std::marker::PhantomData;

            use crate::integrals::shell_tuple::ShellTupleCollection;

            const RANK: usize = count_exprs!($($shell_name),+);

            let lmax: u32 = *[$(
                $basisset.all_shells().map(|shell| shell.basis_shell.l).collect::<Vec<_>>()
            ),+].iter()
                .flatten()
                .max()
                .expect("Unable to determine the maximum angular momentum across all shells.");

            let n_shells = [$($basisset.n_shells()),+];
            log::debug!("Rank-{RANK} shell tuple collection construction:");
            log::debug!(
                "  Total number of tuples: {}",
                n_shells.iter().product::<usize>()
            );
            ShellTupleCollection::<RANK, $ty>::builder()
                .typ(PhantomData)
                .basis_sets([$($basisset),+])
                .lmax(lmax)
                .ccs([$($shell_cc),+])
                .n_shells(n_shells)
                .angular_all_shell_shape([$(
                    $basisset
                        .all_shells()
                        .map(|shell| shell.basis_shell().n_funcs())
                        .sum::<usize>()
                ),+])
                .build()
                .unwrap_or_else(|_| panic!("Unable to construct a shell tuple collection of rank {RANK}."))
        }
    }
}

use duplicate::duplicate_item;
use factorial::DoubleFactorial;
use log;
use ndarray::{s, Zip};
use ndarray_einsum_beta::*;
use num_complex::Complex;
use num_traits::ToPrimitive;

use crate::basis::ao::{CartOrder, ShellOrder};

type C128 = Complex<f64>;

impl_shell_tuple![RANK_2, <s1, s2>];
impl_shell_tuple![RANK_3, <s1, s2, s3>];
impl_shell_tuple![RANK_4, <s1, s2, s3, s4>];
impl_shell_tuple![RANK_5, <s1, s2, s3, s4, s5>];

pub(crate) use {build_shell_tuple, build_shell_tuple_collection};

#[cfg(test)]
#[path = "shell_tuple_tests.rs"]
mod shell_tuple_tests;

#[cfg(test)]
#[path = "shell_tuple_collection_tests.rs"]
mod shell_tuple_collection_tests;