1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
//! Slater determinants from Q-Chem HDF5 archives.

use std::fmt;
use std::marker::PhantomData;
use std::path::PathBuf;

use anyhow::{self, bail, format_err, Context};
use derive_builder::Builder;
use duplicate::duplicate_item;
use factorial::DoubleFactorial;
use hdf5::{self, H5Type};
use lazy_static::lazy_static;
use log;
use nalgebra::Point3;
use ndarray::{s, Array1, Array2, Array4, Axis, Ix3};
use ndarray_linalg::types::Lapack;
use num_complex::ComplexFloat;
use num_traits::{One, ToPrimitive, Zero};
use numeric_sort;
use periodic_table::periodic_table;
use regex::Regex;

use crate::angmom::spinor_rotation_3d::SpinConstraint;
use crate::auxiliary::atom::{Atom, ElementMap};
use crate::auxiliary::molecule::Molecule;
use crate::basis::ao::*;
use crate::basis::ao_integrals::*;
use crate::chartab::chartab_group::CharacterProperties;
use crate::chartab::SubspaceDecomposable;
use crate::drivers::representation_analysis::angular_function::AngularFunctionRepAnalysisParams;
use crate::drivers::representation_analysis::slater_determinant::{
    SlaterDeterminantRepAnalysisDriver, SlaterDeterminantRepAnalysisParams,
};
use crate::drivers::representation_analysis::MagneticSymmetryAnalysisKind;
use crate::drivers::symmetry_group_detection::{
    SymmetryGroupDetectionDriver, SymmetryGroupDetectionResult,
};
use crate::drivers::QSym2Driver;
#[cfg(feature = "integrals")]
use crate::integrals::shell_tuple::build_shell_tuple_collection;
use crate::interfaces::input::SymmetryGroupDetectionInputKind;
use crate::io::format::{
    log_macsec_begin, log_macsec_end, log_micsec_begin, log_micsec_end, qsym2_error, qsym2_output,
};
use crate::io::{read_qsym2_binary, QSym2FileType};
use crate::symmetry::symmetry_core::Symmetry;
use crate::symmetry::symmetry_group::{
    MagneticRepresentedSymmetryGroup, SymmetryGroupProperties, UnitaryRepresentedSymmetryGroup,
};
use crate::target::determinant::SlaterDeterminant;

#[cfg(test)]
#[path = "slater_determinant_tests.rs"]
mod slater_determinant_tests;

// =====================
// Full Q-Chem H5 Driver
// =====================

lazy_static! {
    static ref SP_PATH_RE: Regex =
        Regex::new(r"(.*sp)\\energy_function$").expect("Regex pattern invalid.");
}

// -----------------
// Struct definition
// -----------------

/// Driver to perform symmetry-group detection and Slater determinant representation symmetry
/// analysis for all discoverable single-point calculation data stored in a Q-Chem's `qarchive.h5`
/// file.
#[derive(Clone, Builder)]
pub(crate) struct QChemSlaterDeterminantH5Driver<'a, T>
where
    T: Clone,
{
    /// The `qarchive.h5` file name.
    filename: PathBuf,

    /// The input specification controlling symmetry-group detection.
    symmetry_group_detection_input: &'a SymmetryGroupDetectionInputKind,

    /// The parameters controlling representation analysis of standard angular functions.
    angular_function_analysis_parameters: &'a AngularFunctionRepAnalysisParams,

    /// The parameters controlling representation analysis.
    rep_analysis_parameters: &'a SlaterDeterminantRepAnalysisParams<f64>,

    /// The simplified result of the analysis. Each element in the vector is a tuple containing the
    /// group name and the representation symmetry of the Slater determinant for one single-point
    /// calculation.
    #[builder(default = "None")]
    result: Option<Vec<(String, String)>>,

    /// The numerical type of the Slater determinant.
    #[builder(setter(skip), default = "PhantomData")]
    numerical_type: PhantomData<T>,
}

// ----------------------
// Struct implementations
// ----------------------

impl<'a, T> QChemSlaterDeterminantH5Driver<'a, T>
where
    T: Clone,
{
    /// Returns a builder to construct a [`QChemSlaterDeterminantH5Driver`].
    pub(crate) fn builder() -> QChemSlaterDeterminantH5DriverBuilder<'a, T> {
        QChemSlaterDeterminantH5DriverBuilder::default()
    }
}

// ~~~~~~~~~~~~~~~~~~~
// Slater determinants
// ~~~~~~~~~~~~~~~~~~~

// Specific for Slater determinant numeric type f64
// ''''''''''''''''''''''''''''''''''''''''''''''''
impl<'a> QChemSlaterDeterminantH5Driver<'a, f64> {
    /// Performs analysis for all real-valued single-point determinants.
    fn analyse(&mut self) -> Result<(), anyhow::Error> {
        let f = hdf5::File::open(&self.filename)?;
        let mut sp_paths = f
            .group(".counters")?
            .member_names()?
            .iter()
            .filter_map(|path| {
                if SP_PATH_RE.is_match(path) {
                    let path = path.replace("\\", "/");
                    let mut energy_function_indices = f
                        .group(&path)
                        .and_then(|sp_energy_function_group| {
                            sp_energy_function_group.member_names()
                        })
                        .ok()?;
                    numeric_sort::sort(&mut energy_function_indices);
                    Some((
                        path.replace("/energy_function", ""),
                        energy_function_indices,
                    ))
                } else {
                    None
                }
            })
            .collect::<Vec<_>>();
        sp_paths.sort_by(|(path_a, _), (path_b, _)| numeric_sort::cmp(path_a, path_b));

        let pd_input = self.symmetry_group_detection_input;
        let afa_params = self.angular_function_analysis_parameters;
        let sda_params = self.rep_analysis_parameters;
        let result = sp_paths
            .iter()
            .flat_map(|(sp_path, energy_function_indices)| {
                energy_function_indices.iter().map(|energy_function_index| {
                    log_macsec_begin(&format!(
                        "Analysis for {} (energy function {energy_function_index})",
                        sp_path.clone()
                    ));
                    qsym2_output!("");
                    let sp = f.group(sp_path)?;
                    let sp_driver_result = match sda_params.use_magnetic_group {
                        Some(MagneticSymmetryAnalysisKind::Corepresentation) => {
                            let mut sp_driver = QChemSlaterDeterminantH5SinglePointDriver::<
                                MagneticRepresentedSymmetryGroup,
                                f64,
                            >::builder()
                            .sp_group(&sp)
                            .energy_function_index(energy_function_index)
                            .symmetry_group_detection_input(pd_input)
                            .angular_function_analysis_parameters(afa_params)
                            .rep_analysis_parameters(sda_params)
                            .build()?;
                            let _ = sp_driver.run();
                            sp_driver.result().map(|(sym, rep)| {
                                (
                                    sym.group_name
                                        .as_ref()
                                        .unwrap_or(&String::new())
                                        .to_string(),
                                    rep.as_ref()
                                        .map(|rep| rep.to_string())
                                        .unwrap_or_else(|err| err.to_string()),
                                )
                            })
                        }
                        Some(MagneticSymmetryAnalysisKind::Representation) | None => {
                            let mut sp_driver = QChemSlaterDeterminantH5SinglePointDriver::<
                                UnitaryRepresentedSymmetryGroup,
                                f64,
                            >::builder()
                            .sp_group(&sp)
                            .energy_function_index(energy_function_index)
                            .symmetry_group_detection_input(pd_input)
                            .angular_function_analysis_parameters(afa_params)
                            .rep_analysis_parameters(sda_params)
                            .build()?;
                            let _ = sp_driver.run();
                            sp_driver.result().map(|(sym, rep)| {
                                (
                                    sym.group_name
                                        .as_ref()
                                        .unwrap_or(&String::new())
                                        .to_string(),
                                    rep.as_ref()
                                        .map(|rep| rep.to_string())
                                        .unwrap_or_else(|err| err.to_string()),
                                )
                            })
                        }
                    };
                    qsym2_output!("");
                    log_macsec_end(&format!(
                        "Analysis for {} (energy function {energy_function_index})",
                        sp_path.clone()
                    ));
                    qsym2_output!("");
                    sp_driver_result
                })
            })
            .map(|res| {
                res.unwrap_or_else(|err| {
                    (
                        "Unidentified symmetry group".to_string(),
                        format!("Unidentified (co)representation: {err}"),
                    )
                })
            })
            .collect::<Vec<_>>();

        log_macsec_begin("Q-Chem HDF5 Archive Summary");
        qsym2_output!("");
        let path_length = sp_paths
            .iter()
            .map(|(path, _)| path.chars().count())
            .max()
            .unwrap_or(18)
            .max(18);
        let energy_function_length = sp_paths
            .iter()
            .map(|(_, energy_function_indices)| {
                energy_function_indices
                    .iter()
                    .map(|index| index.chars().count())
                    .max()
                    .unwrap_or(1)
                    .max(1)
            })
            .max()
            .unwrap_or(7)
            .max(7);
        let group_length = result
            .iter()
            .map(|(group, _)| group.chars().count())
            .max()
            .unwrap_or(5)
            .max(5);
        let sym_length = result
            .iter()
            .map(|(_, sym)| sym.chars().count())
            .max()
            .unwrap_or(13)
            .max(13);
        let table_width = path_length + energy_function_length + group_length + sym_length + 8;
        qsym2_output!("{}", "┈".repeat(table_width));
        qsym2_output!(
            " {:<path_length$}  {:<energy_function_length$}  {:<group_length$}  {:<}",
            "Single-point calc.",
            "E func.",
            "Group",
            "Det. symmetry"
        );
        qsym2_output!("{}", "┈".repeat(table_width));
        sp_paths
            .iter()
            .flat_map(|(sp_path, energy_function_indices)| {
                energy_function_indices
                    .iter()
                    .map(|index| (sp_path.clone(), index))
            })
            .zip(result.iter())
            .for_each(|((path, index), (group, sym))| {
                qsym2_output!(
                    " {:<path_length$}  {:<energy_function_length$}  {:<group_length$}  {:<#}",
                    path,
                    index,
                    group,
                    sym
                );
            });
        qsym2_output!("{}", "┈".repeat(table_width));
        qsym2_output!("");
        log_macsec_end("Q-Chem HDF5 Archive Summary");

        self.result = Some(result);
        Ok(())
    }
}

impl<'a> QSym2Driver for QChemSlaterDeterminantH5Driver<'a, f64> {
    type Params = SlaterDeterminantRepAnalysisParams<f64>;

    type Outcome = Vec<(String, String)>;

    fn result(&self) -> Result<&Self::Outcome, anyhow::Error> {
        self.result.as_ref().ok_or(format_err!(
            "No Q-Chem HDF5 analysis results for a real Slater determinant found."
        ))
    }

    fn run(&mut self) -> Result<(), anyhow::Error> {
        self.analyse()
    }
}

// ==================
// SinglePoint Driver
// ==================

// ---------------
// Enum definition
// ---------------

/// Enumerated type to distinguish different kinds of molecular orbitals.
enum OrbitalType {
    /// Canonical molecular orbitals as obtained by diagonalising Fock matrices.
    Canonical,

    /// Localised molecular orbitals as obtained by a localisation method.
    Localised,
}

// -----------------
// Struct definition
// -----------------

/// Driver to perform symmetry-group detection and representation analysis for a single-point
/// calculation result in a Q-Chem's `qarchive.h5` file.
#[derive(Clone, Builder)]
struct QChemSlaterDeterminantH5SinglePointDriver<'a, G, T>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
{
    /// A H5 group containing data from a single-point calculation.
    sp_group: &'a hdf5::Group,

    /// The index of the energy function whose results are to be considered for this single-point
    /// symmetry analysis.
    #[builder(setter(custom))]
    energy_function_index: String,

    /// The parameters controlling symmetry-group detection.
    symmetry_group_detection_input: &'a SymmetryGroupDetectionInputKind,

    /// The parameters controlling representation analysis of standard angular functions.
    angular_function_analysis_parameters: &'a AngularFunctionRepAnalysisParams,

    /// The parameters controlling representation analysis of Slater determinants.
    rep_analysis_parameters: &'a SlaterDeterminantRepAnalysisParams<f64>,

    /// The symmetry of the system and the representation of the Slater determinant.
    #[builder(default = "None")]
    result: Option<(
        Symmetry,
        Result<<G::CharTab as SubspaceDecomposable<T>>::Decomposition, String>,
    )>,
}

// ----------------------
// Struct implementations
// ----------------------

impl<'a, G, T> QChemSlaterDeterminantH5SinglePointDriverBuilder<'a, G, T>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
{
    fn energy_function_index(&mut self, idx: &str) -> &mut Self {
        self.energy_function_index = Some(idx.to_string());
        self
    }
}

impl<'a, G, T> QChemSlaterDeterminantH5SinglePointDriver<'a, G, T>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack + H5Type,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
{
    /// Returns a builder to construct a [`QChemSlaterDeterminantH5SinglePointDriver`].
    pub(crate) fn builder() -> QChemSlaterDeterminantH5SinglePointDriverBuilder<'a, G, T> {
        QChemSlaterDeterminantH5SinglePointDriverBuilder::default()
    }

    /// Extracts the molecular structure from the single-point H5 group.
    fn extract_molecule(&self) -> Result<Molecule, anyhow::Error> {
        let emap = ElementMap::new();
        let coordss = self
            .sp_group
            .dataset("structure/coordinates")?
            .read_2d::<f64>()?;
        let atomic_numbers = self
            .sp_group
            .dataset("structure/nuclei")?
            .read_1d::<usize>()?;
        let atoms = coordss
            .rows()
            .into_iter()
            .zip(atomic_numbers.iter())
            .map(|(coords, atomic_number)| {
                let element = periodic_table()
                    .get(*atomic_number - 1)
                    .ok_or(hdf5::Error::from(
                        format!(
                            "Element with atomic number {atomic_number} could not be identified."
                        )
                        .as_str(),
                    ))?
                    .symbol;
                let coordinates = Point3::new(coords[0], coords[1], coords[2]);
                Ok::<_, hdf5::Error>(Atom::new_ordinary(element, coordinates, &emap, 1e-8))
            })
            .collect::<Result<Vec<Atom>, _>>()?;
        let mol = Molecule::from_atoms(&atoms, 1e-14);
        Ok(mol)
    }

    /// Extracts the basis angular order information from the single-point H5 group.
    fn extract_bao(&self, mol: &'a Molecule) -> Result<BasisAngularOrder<'a>, anyhow::Error> {
        let shell_types = self
            .sp_group
            .dataset("aobasis/shell_types")?
            .read_1d::<i32>()?;
        let shell_to_atom_map = self
            .sp_group
            .dataset("aobasis/shell_to_atom_map")?
            .read_1d::<usize>()?
            .iter()
            .zip(shell_types.iter())
            .flat_map(|(&idx, shell_type)| {
                if *shell_type == -1 {
                    vec![idx, idx]
                } else {
                    vec![idx]
                }
            })
            .collect::<Vec<_>>();

        let bss: Vec<BasisShell> = shell_types
            .iter()
            .flat_map(|shell_type| {
                if *shell_type == 0 {
                    // S shell
                    vec![BasisShell::new(0, ShellOrder::Cart(CartOrder::qchem(0)))]
                } else if *shell_type == 1 {
                    // P shell
                    vec![BasisShell::new(1, ShellOrder::Cart(CartOrder::qchem(1)))]
                } else if *shell_type == -1 {
                    // SP shell
                    vec![
                        BasisShell::new(0, ShellOrder::Cart(CartOrder::qchem(0))),
                        BasisShell::new(1, ShellOrder::Cart(CartOrder::qchem(1))),
                    ]
                } else if *shell_type < 0 {
                    // Cartesian D shell or higher
                    let l = shell_type.unsigned_abs();
                    vec![BasisShell::new(l, ShellOrder::Cart(CartOrder::qchem(l)))]
                } else {
                    // Pure D shell or higher
                    let l = shell_type.unsigned_abs();
                    vec![BasisShell::new(
                        l,
                        ShellOrder::Pure(PureOrder::increasingm(l)),
                    )]
                }
            })
            .collect::<Vec<BasisShell>>();

        let batms = mol
            .atoms
            .iter()
            .enumerate()
            .map(|(atom_i, atom)| {
                let shells = bss
                    .iter()
                    .zip(shell_to_atom_map.iter())
                    .filter_map(|(bs, atom_index)| {
                        if *atom_index == atom_i {
                            Some(bs.clone())
                        } else {
                            None
                        }
                    })
                    .collect::<Vec<_>>();
                BasisAtom::new(atom, &shells)
            })
            .collect::<Vec<BasisAtom>>();
        Ok(BasisAngularOrder::new(&batms))
    }

    /// Extracts the spatial atomic-orbital overlap matrix from the single-point H5 group.
    ///
    /// Note that the overlap matrix in the HDF5 file uses lexicographic order for Cartesian
    /// functions. This is inconsistent with the conventional Q-Chem ordering used for molecular
    /// orbital coefficients. See [`Self::recompute_sao`] for a way to get the atomic-orbital
    /// overlap matrix with the consistent Cartesian ordering.
    fn extract_sao(&self) -> Result<Array2<T>, anyhow::Error> {
        self.sp_group
            .dataset("aobasis/overlap_matrix")?
            .read_2d::<T>()
            .map_err(|err| err.into())
    }

    /// Extracts the full basis set information from the single-point H5 group.
    fn extract_basis_set(&self, mol: &'a Molecule) -> Result<BasisSet<f64, f64>, anyhow::Error> {
        let shell_types = self
            .sp_group
            .dataset("aobasis/shell_types")?
            .read_1d::<i32>()?;
        let shell_to_atom_map = self
            .sp_group
            .dataset("aobasis/shell_to_atom_map")?
            .read_1d::<usize>()?
            .iter()
            .zip(shell_types.iter())
            .flat_map(|(&idx, shell_type)| {
                if *shell_type == -1 {
                    vec![idx, idx]
                } else {
                    vec![idx]
                }
            })
            .collect::<Vec<_>>();

        let primitives_per_shell = self
            .sp_group
            .dataset("aobasis/primitives_per_shell")?
            .read_1d::<usize>()?;
        let contraction_coefficients = self
            .sp_group
            .dataset("aobasis/contraction_coefficients")?
            .read_1d::<f64>()?;
        let sp_contraction_coefficients = self
            .sp_group
            .dataset("aobasis/sp_contraction_coefficients")?
            .read_1d::<f64>()?;
        let primitive_exponents = self
            .sp_group
            .dataset("aobasis/primitive_exponents")?
            .read_1d::<f64>()?;
        // `shell_coordinates` in Bohr radius.
        let shell_coordinates = self
            .sp_group
            .dataset("aobasis/shell_coordinates")?
            .read_2d::<f64>()?;

        let bscs: Vec<BasisShellContraction<f64, f64>> = primitives_per_shell
            .iter()
            .scan(0, |end, n_prims| {
                let start = *end;
                *end += n_prims;
                Some((start, *end))
            })
            .zip(shell_types.iter())
            .zip(shell_coordinates.rows())
            .flat_map(|(((start, end), shell_type), centre)| {
                if *shell_type == 0 {
                    // S shell
                    let basis_shell = BasisShell::new(0, ShellOrder::Cart(CartOrder::qchem(0)));
                    let primitives = primitive_exponents
                        .slice(s![start..end])
                        .iter()
                        .cloned()
                        .zip(
                            contraction_coefficients
                                .slice(s![start..end])
                                .iter()
                                .cloned(),
                        )
                        .collect::<Vec<_>>();
                    let contraction = GaussianContraction { primitives };
                    let cart_origin = Point3::new(centre[0], centre[1], centre[2]);
                    vec![BasisShellContraction {
                        basis_shell,
                        contraction,
                        cart_origin,
                        k: None,
                    }]
                } else if *shell_type == 1 {
                    // P shell
                    let basis_shell = BasisShell::new(1, ShellOrder::Cart(CartOrder::qchem(1)));
                    let primitives = primitive_exponents
                        .slice(s![start..end])
                        .iter()
                        .cloned()
                        .zip(
                            contraction_coefficients
                                .slice(s![start..end])
                                .iter()
                                .cloned(),
                        )
                        .collect::<Vec<_>>();
                    let contraction = GaussianContraction { primitives };
                    let cart_origin = Point3::new(centre[0], centre[1], centre[2]);
                    vec![BasisShellContraction {
                        basis_shell,
                        contraction,
                        cart_origin,
                        k: None,
                    }]
                } else if *shell_type == -1 {
                    // SP shell
                    let basis_shell_s = BasisShell::new(0, ShellOrder::Cart(CartOrder::qchem(0)));
                    let primitives_s = primitive_exponents
                        .slice(s![start..end])
                        .iter()
                        .cloned()
                        .zip(
                            contraction_coefficients
                                .slice(s![start..end])
                                .iter()
                                .cloned(),
                        )
                        .collect::<Vec<_>>();
                    let contraction_s = GaussianContraction {
                        primitives: primitives_s,
                    };

                    let basis_shell_p = BasisShell::new(1, ShellOrder::Cart(CartOrder::qchem(1)));
                    let primitives_p = primitive_exponents
                        .slice(s![start..end])
                        .iter()
                        .cloned()
                        .zip(
                            sp_contraction_coefficients
                                .slice(s![start..end])
                                .iter()
                                .cloned(),
                        )
                        .collect::<Vec<_>>();
                    let contraction_p = GaussianContraction {
                        primitives: primitives_p,
                    };

                    let cart_origin = Point3::new(centre[0], centre[1], centre[2]);
                    vec![
                        BasisShellContraction {
                            basis_shell: basis_shell_s,
                            contraction: contraction_s,
                            cart_origin: cart_origin.clone(),
                            k: None,
                        },
                        BasisShellContraction {
                            basis_shell: basis_shell_p,
                            contraction: contraction_p,
                            cart_origin,
                            k: None,
                        },
                    ]
                } else if *shell_type < 0 {
                    // Cartesian D shell or higher
                    let l = shell_type.unsigned_abs();
                    let basis_shell = BasisShell::new(l, ShellOrder::Cart(CartOrder::qchem(l)));
                    let primitives = primitive_exponents
                        .slice(s![start..end])
                        .iter()
                        .cloned()
                        .zip(
                            contraction_coefficients
                                .slice(s![start..end])
                                .iter()
                                .cloned(),
                        )
                        .collect::<Vec<_>>();
                    let contraction = GaussianContraction { primitives };
                    let cart_origin = Point3::new(centre[0], centre[1], centre[2]);
                    vec![BasisShellContraction {
                        basis_shell,
                        contraction,
                        cart_origin,
                        k: None,
                    }]
                } else {
                    // Pure D shell or higher
                    let l = shell_type.unsigned_abs();
                    let basis_shell =
                        BasisShell::new(l, ShellOrder::Pure(PureOrder::increasingm(l)));
                    let primitives = primitive_exponents
                        .slice(s![start..end])
                        .iter()
                        .cloned()
                        .zip(
                            contraction_coefficients
                                .slice(s![start..end])
                                .iter()
                                .cloned(),
                        )
                        .collect::<Vec<_>>();
                    let contraction = GaussianContraction { primitives };
                    let cart_origin = Point3::new(centre[0], centre[1], centre[2]);
                    vec![BasisShellContraction {
                        basis_shell,
                        contraction,
                        cart_origin,
                        k: None,
                    }]
                }
            })
            .collect::<Vec<BasisShellContraction<f64, f64>>>();

        let basis_atoms = mol
            .atoms
            .iter()
            .enumerate()
            .map(|(atom_i, _)| {
                let shells = bscs
                    .iter()
                    .zip(shell_to_atom_map.iter())
                    .filter_map(|(bs, atom_index)| {
                        if *atom_index == atom_i {
                            Some(bs.clone())
                        } else {
                            None
                        }
                    })
                    .collect::<Vec<_>>();
                shells
            })
            .collect::<Vec<Vec<BasisShellContraction<f64, f64>>>>();

        let mut basis_set = BasisSet::<f64, f64>::new(basis_atoms);

        // Q-Chem renormalises each Gaussian primitive, but this is not the convention used in
        // QSym². We therefore un-normalise the Gaussian primitives to restore the original
        // contraction coefficients.
        let prefactor = (2.0 / std::f64::consts::PI).powf(0.75);
        basis_set.all_shells_mut().for_each(|bsc| {
            let l = bsc.basis_shell().l;
            let l_i32 = l
                .to_i32()
                .unwrap_or_else(|| panic!("Unable to convert `{l}` to `i32`."));
            let l_f64 = l
                .to_f64()
                .unwrap_or_else(|| panic!("Unable to convert `{l}` to `f64`."));
            let doufac_sqrt = if l == 0 {
                1
            } else {
                ((2 * l) - 1)
                    .checked_double_factorial()
                    .unwrap_or_else(|| panic!("Unable to obtain `{}!!`.", 2 * l - 1))
            }
            .to_f64()
            .unwrap_or_else(|| panic!("Unable to convert `{}!!` to `f64`.", 2 * l - 1))
            .sqrt();
            bsc.contraction.primitives.iter_mut().for_each(|(a, c)| {
                let n = prefactor * 2.0.powi(l_i32) * a.powf(l_f64 / 2.0 + 0.75) / doufac_sqrt;
                *c /= n;
            });
        });
        Ok(basis_set)
    }

    /// Recomputes the spatial atomic-orbital overlap matrix.
    ///
    /// The overlap matrix stored in the H5 group unfortunately uses lexicographic order for
    /// Cartesian functions, which is inconsistent with that used in the coefficients. We thus
    /// recompute the overlap matrix from the basis set information using the conventional Q-Chem
    /// order for Cartesian functions.
    fn recompute_sao(&self) -> Result<Array2<f64>, anyhow::Error> {
        log::debug!("Recomputing atomic-orbital overlap matrix...");
        let mol = self.extract_molecule()?;
        let basis_set = self.extract_basis_set(&mol)?;
        let stc = build_shell_tuple_collection![
            <s1, s2>;
            false, false;
            &basis_set, &basis_set;
            f64
        ];
        let sao_res = stc.overlap([0, 0])
            .pop()
            .ok_or(format_err!("Unable to compute the AO overlap matrix."));
        log::debug!("Recomputing atomic-orbital overlap matrix... Done.");
        sao_res
    }
}

// ~~~~~~~~~~~~~~~~~~~
// Slater determinants
// ~~~~~~~~~~~~~~~~~~~

// Generic for all symmetry groups G and determinant numeric type T
// ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
impl<'a, G, T> QChemSlaterDeterminantH5SinglePointDriver<'a, G, T>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack + H5Type,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
{
    /// Extracts the Slater determinant from the single-point H5 group.
    ///
    /// # Arguments
    ///
    /// * `mol` - The molecule to be associated with the extracted determinant.
    /// * `bao` - The basis angular order information to be associated with the extracted determinant.
    /// * `threshold` - The comparison threshold to be associated with the extracted determinant.
    ///
    /// # Returns
    ///
    /// The extracted Slater determinant.
    fn extract_determinant(
        &self,
        mol: &'a Molecule,
        bao: &'a BasisAngularOrder,
        threshold: <T as ComplexFloat>::Real,
        orbital_type: OrbitalType,
    ) -> Result<SlaterDeterminant<'a, T>, anyhow::Error> {
        let energy = self
            .sp_group
            .dataset(&format!(
                "energy_function/{}/energy",
                self.energy_function_index
            ))?
            .read_scalar::<T>()
            .map_err(|err| err.to_string());
        let orbital_path = match orbital_type {
            OrbitalType::Canonical => format!(
                "energy_function/{}/method/scf/molecular_orbitals",
                self.energy_function_index
            ),
            OrbitalType::Localised => format!(
                "energy_function/{}/analysis/localized_orbitals/{}/molecular_orbitals",
                self.energy_function_index, self.energy_function_index
            ),
        };
        let nspins = self
            .sp_group
            .dataset(&format!("{orbital_path}/nsets"))?
            .read_scalar::<usize>()?;
        let nmo = self
            .sp_group
            .dataset(&format!("{orbital_path}/norb",))?
            .read_scalar::<usize>()?;
        let (spincons, occs) = match nspins {
            1 => {
                log::warn!(
                    "The number of spin spaces detected is 1. \
                    It will be assumed that this implies an RHF calculation. \
                    However, it must be noted that, if the calculation is GHF instead, then the \
                    following symmetry analysis will be wrong, because Q-Chem does not archive \
                    GHF MO coefficients correctly."
                );
                let nalpha = self
                    .sp_group
                    .dataset("structure/nalpha")?
                    .read_scalar::<usize>()?;
                let occ_a = Array1::from_vec(
                    (0..nmo)
                        .map(|i| {
                            if i < nalpha {
                                <T as ComplexFloat>::Real::one()
                            } else {
                                <T as ComplexFloat>::Real::zero()
                            }
                        })
                        .collect::<Vec<_>>(),
                );
                (SpinConstraint::Restricted(2), vec![occ_a])
            }
            2 => {
                let nalpha = self
                    .sp_group
                    .dataset("structure/nalpha")?
                    .read_scalar::<usize>()?;
                let nbeta = self
                    .sp_group
                    .dataset("structure/nbeta")?
                    .read_scalar::<usize>()?;
                let occ_a = Array1::from_vec(
                    (0..nmo)
                        .map(|i| {
                            if i < nalpha {
                                <T as ComplexFloat>::Real::one()
                            } else {
                                <T as ComplexFloat>::Real::zero()
                            }
                        })
                        .collect::<Vec<_>>(),
                );
                let occ_b = Array1::from_vec(
                    (0..nmo)
                        .map(|i| {
                            if i < nbeta {
                                <T as ComplexFloat>::Real::one()
                            } else {
                                <T as ComplexFloat>::Real::zero()
                            }
                        })
                        .collect::<Vec<_>>(),
                );
                (SpinConstraint::Unrestricted(2, true), vec![occ_a, occ_b])
            }
            _ => {
                bail!("Unexpected number of spin spaces from Q-Chem.")
            }
        };
        let cs = self
            .sp_group
            .dataset(&format!("{orbital_path}/mo_coefficients"))?
            .read::<T, Ix3>()?
            .axis_iter(Axis(0))
            .map(|c| c.to_owned())
            .collect::<Vec<_>>();
        let mo_energies = self
            .sp_group
            .dataset(&format!("{orbital_path}/mo_energies"))
            .and_then(|mo_energies_dataset| {
                mo_energies_dataset.read_2d::<T>().map(|mo_energies_arr| {
                    mo_energies_arr
                        .columns()
                        .into_iter()
                        .map(|c| c.to_owned())
                        .collect::<Vec<_>>()
                })
            })
            .ok();

        SlaterDeterminant::builder()
            .spin_constraint(spincons)
            .bao(bao)
            .complex_symmetric(false)
            .mol(mol)
            .coefficients(&cs)
            .occupations(&occs)
            .mo_energies(mo_energies)
            .energy(energy)
            .threshold(threshold)
            .build()
            .map_err(|err| err.into())
    }
}

// Specific for unitary-represented and magnetic-represented symmetry groups and determinant numeric type f64
// ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#[duplicate_item(
    [
        gtype_ [ UnitaryRepresentedSymmetryGroup ]
        doc_ [ "Performs symmetry-group detection and unitary-represented representation analysis." ]
    ]
    [
        gtype_ [ MagneticRepresentedSymmetryGroup ]
        doc_ [ "Performs symmetry-group detection and magnetic-represented corepresentation analysis." ]
    ]
)]
impl<'a> QChemSlaterDeterminantH5SinglePointDriver<'a, gtype_, f64> {
    #[doc = doc_]
    fn analyse(&mut self) -> Result<(), anyhow::Error> {
        let mol = self.extract_molecule()
            .with_context(|| "Unable to extract the molecule from the HDF5 file while performing symmetry analysis for a single-point Q-Chem calculation")?;
        log::debug!("Performing symmetry-group detection...");
        let pd_res = match self.symmetry_group_detection_input {
            SymmetryGroupDetectionInputKind::Parameters(pd_params) => {
                let mut pd_driver = SymmetryGroupDetectionDriver::builder()
                    .parameters(pd_params)
                    .molecule(Some(&mol))
                    .build()
                    .unwrap();
                let pd_run = pd_driver.run();
                if let Err(err) = pd_run {
                    qsym2_error!("Symmetry-group detection has failed with error:");
                    qsym2_error!("  {err:#}");
                }
                let pd_res = pd_driver.result()?;
                pd_res.clone()
            }
            SymmetryGroupDetectionInputKind::FromFile(path) => {
                read_qsym2_binary::<SymmetryGroupDetectionResult, _>(path, QSym2FileType::Sym)
                    .with_context(|| "Unable to read the specified .qsym2.sym file while performing symmetry analysis for a single-point Q-Chem calculation")?
            }
        };
        let recentred_mol = &pd_res.pre_symmetry.recentred_molecule;
        let sym = if self.rep_analysis_parameters.use_magnetic_group.is_some() {
            pd_res.magnetic_symmetry.clone()
        } else {
            Some(pd_res.unitary_symmetry.clone())
        }
        .ok_or(format_err!("Symmetry not found."))?;
        log::debug!("Performing symmetry-group detection... Done.");

        let rep = || {
            log::debug!("Extracting AO basis information for representation analysis...");
            let sao = self.recompute_sao()
                .with_context(|| "Unable to extract the SAO matrix from the HDF5 file while performing symmetry analysis for a single-point Q-Chem calculation")
                .map_err(|err| err.to_string())?;
            let bao = self.extract_bao(recentred_mol)
                .with_context(|| "Unable to extract the basis angular order information from the HDF5 file while performing symmetry analysis for a single-point Q-Chem calculation")
                .map_err(|err| err.to_string())?;
            let basis_set_opt = if self.rep_analysis_parameters.analyse_density_symmetries {
                self.extract_basis_set(recentred_mol).ok()
            } else {
                None
            };
            log::debug!("Extracting AO basis information for representation analysis... Done.");

            #[cfg(feature = "integrals")]
            let sao_4c: Option<Array4<f64>> = basis_set_opt.map(|basis_set| {
                log::debug!("Computing four-centre overlap integrals for density symmetry analysis...");
                let stc = build_shell_tuple_collection![
                    <s1, s2, s3, s4>;
                    false, false, false, false;
                    &basis_set, &basis_set, &basis_set, &basis_set;
                    f64
                ];
                let sao_4c = stc.overlap([0, 0, 0, 0])
                    .pop()
                    .expect("Unable to retrieve the four-centre overlap tensor.");
                log::debug!("Computing four-centre overlap integrals for density symmetry analysis... Done.");
                sao_4c
            });

            #[cfg(not(feature = "integrals"))]
            let sao_4c: Option<Array4<f64>> = None;

            log::debug!(
                "Extracting canonical determinant information for representation analysis..."
            );
            let det = self.extract_determinant(
                recentred_mol,
                &bao,
                self.rep_analysis_parameters
                    .linear_independence_threshold,
                OrbitalType::Canonical,
            )
            .with_context(|| "Unable to extract the determinant from the HDF5 file while performing symmetry analysis for a single-point Q-Chem calculation")
            .map_err(|err| err.to_string())?;
            log::debug!(
                "Extracting canonical determinant information for representation analysis... Done."
            );

            log::debug!("Running representation analysis on canonical determinant...");
            let mut sda_driver =
                SlaterDeterminantRepAnalysisDriver::<gtype_, f64>::builder()
                    .parameters(self.rep_analysis_parameters)
                    .angular_function_parameters(self.angular_function_analysis_parameters)
                    .determinant(&det)
                    .sao_spatial(&sao)
                    .sao_spatial_4c(sao_4c.as_ref())
                    .symmetry_group(&pd_res)
                    .build()
                    .with_context(|| "Unable to construct a Slater determinant representation analysis driver while performing symmetry analysis for a single-point Q-Chem calculation")
                    .map_err(|err| err.to_string())?;
            log_micsec_begin("Canonical orbital representation analysis");
            let sda_run = sda_driver.run();
            log_micsec_end("Canonical orbital representation analysis");
            qsym2_output!("");
            log::debug!("Running representation analysis on canonical determinant... Done.");
            if let Err(err) = sda_run {
                qsym2_error!("Representation analysis has failed with error:");
                qsym2_error!("  {err:#}");
            }

            let _ = self
                .extract_determinant(
                    recentred_mol,
                    &bao,
                    self.rep_analysis_parameters.linear_independence_threshold,
                    OrbitalType::Localised,
                )
                .and_then(|loc_det| {
                    log::debug!("Running representation analysis on localised determinant...");
                    let mut loc_sda_driver = SlaterDeterminantRepAnalysisDriver::<
                        UnitaryRepresentedSymmetryGroup,
                        f64,
                    >::builder()
                    .parameters(self.rep_analysis_parameters)
                    .angular_function_parameters(self.angular_function_analysis_parameters)
                    .determinant(&loc_det)
                    .sao_spatial(&sao)
                    .sao_spatial_4c(sao_4c.as_ref())
                    .symmetry_group(&pd_res)
                    .build()?;
                    log_micsec_begin("Localised orbital representation analysis");
                    let res = loc_sda_driver.run();
                    log_micsec_end("Localised orbital representation analysis");
                    qsym2_output!("");
                    log::debug!(
                        "Running representation analysis on localised determinant... Done."
                    );
                    res
                });

            sda_driver
                .result()
                .map_err(|err| err.to_string())
                .and_then(|sda_res| sda_res.determinant_symmetry().clone())
        };
        self.result = Some((sym, rep()));
        Ok(())
    }
}

// ---------------------
// Trait implementations
// ---------------------

// ~~~~~~~~~~~~~~~~~~~
// Slater determinants
// ~~~~~~~~~~~~~~~~~~~

// Specific for unitary-represented and magnetic-represented symmetry groups and determinant numeric type f64
// ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
#[duplicate_item(
    [
        gtype_ [ UnitaryRepresentedSymmetryGroup ]
        err_ [ "No Q-Chem single-point analysis results (unitary-represented group, real determinant) found." ]
    ]
    [
        gtype_ [ MagneticRepresentedSymmetryGroup ]
        err_ [ "No Q-Chem single-point analysis results (magnetic-represented group, real determinant) found." ]
    ]
)]
impl<'a> QSym2Driver for QChemSlaterDeterminantH5SinglePointDriver<'a, gtype_, f64> {
    type Params = SlaterDeterminantRepAnalysisParams<f64>;

    type Outcome = (
        Symmetry,
        Result<
            <<gtype_ as CharacterProperties>::CharTab as SubspaceDecomposable<f64>>::Decomposition,
            String,
        >,
    );

    fn result(&self) -> Result<&Self::Outcome, anyhow::Error> {
        self.result.as_ref().ok_or(format_err!(err_))
    }

    fn run(&mut self) -> Result<(), anyhow::Error> {
        self.analyse()
    }
}