1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
//! Symmetric groups of permutations.

use std::collections::{HashSet, VecDeque};
use std::fmt;
use std::ops::Range;

use anyhow::{self, format_err};
use derive_builder::Builder;
use factorial::Factorial;
use indexmap::IndexSet;
use itertools::Itertools;
use ndarray::Array2;
use rayon::prelude::*;

use crate::chartab::chartab_group::{CharacterProperties, IrrepCharTabConstruction};
use crate::chartab::{CharacterTable, RepCharacterTable};
use crate::group::class::ClassProperties;
use crate::group::{GroupProperties, UnitaryRepresentedGroup};
use crate::permutation::permutation_symbols::{
    deduce_permutation_irrep_symbols, sort_perm_irreps, PermutationClassSymbol,
    PermutationIrrepSymbol,
};
use crate::permutation::Permutation;
use crate::permutation::PermutationRank;

#[cfg(test)]
#[path = "permutation_group_tests.rs"]
mod permutation_group_tests;

// ==================
// Struct definitions
// ==================

/// Lazy iterator for permutations of a particular rank enumerated by their Lehmer encoding
/// integers.
#[derive(Clone)]
pub struct PermutationIterator<T: PermutationRank> {
    rank: T,
    raw_perm_indices: Range<usize>,
}

impl<T: PermutationRank> Iterator for PermutationIterator<T>
where
    std::ops::Range<T>: Iterator + DoubleEndedIterator,
    Vec<T>: FromIterator<<std::ops::Range<T> as Iterator>::Item>,
    VecDeque<T>: FromIterator<<std::ops::Range<T> as Iterator>::Item>,
    <T as TryFrom<usize>>::Error: fmt::Debug,
    IndexSet<T>: FromIterator<<std::ops::Range<T> as Iterator>::Item>,
{
    type Item = Permutation<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.raw_perm_indices
            .next()
            .and_then(|index| Permutation::<T>::from_lehmer_index(index, self.rank).ok())
    }
}

/// Dedicated structure for managing permutation groups efficiently. Only permutation groups of
/// ranks up to 20 are supported, as higher-rank permutation groups have too large orders not
/// representable with `usize` which is `u64` on most modern machines.
#[derive(Clone, Builder)]
pub struct PermutationGroup {
    /// The rank of the permutation group.
    rank: u8,

    /// The lazy iterator yielding all permutations in this group in their Lehmer-encoding-integer
    /// order.
    perms_iter: PermutationIterator<u8>,

    /// All possible cycle patterns of this group. These are the possible partitions of
    /// [`Self::rank`].
    #[builder(setter(skip), default = "None")]
    cycle_patterns: Option<IndexSet<Vec<u8>>>,

    /// A vector of hashsets, each of which contains the indices of the elements having the
    /// corresponding cycle pattern in [`Self::cycle_patterns`]. These elements are also in the
    /// same conjugacy class.
    #[builder(setter(skip), default = "None")]
    conjugacy_classes: Option<Vec<HashSet<usize>>>,

    /// The symbols for the conjugacy classes.
    #[builder(setter(skip), default = "None")]
    conjugacy_class_symbols: Option<IndexSet<PermutationClassSymbol<u8>>>,

    /// The character table for the irreducible representations of this permutation group.
    #[builder(setter(skip), default = "None")]
    irrep_character_table:
        Option<RepCharacterTable<PermutationIrrepSymbol, PermutationClassSymbol<u8>>>,
}

impl PermutationGroup {
    fn builder() -> PermutationGroupBuilder {
        PermutationGroupBuilder::default()
    }
}

// =================
// Trait definitions
// =================

/// Trait for permutation groups. Only permutation groups of ranks up to 20 are supported, as
/// higher-rank permutation groups have too large orders not representable with `usize` which is
/// `u64` on most modern machines.
pub trait PermutationGroupProperties:
    ClassProperties<GroupElement = Permutation<u8>, ClassSymbol = PermutationClassSymbol<u8>>
    + CharacterProperties
    + Sized
{
    /// Constructs a permutation group $`Sym(n)`$ from a given rank $`n`$ (*i.e.* the number of
    /// elements in the set to be permuted).
    ///
    /// # Arguments
    ///
    /// * `rank` - The permutation rank.
    ///
    /// # Returns
    ///
    /// A finite group of permutations.
    fn from_rank(rank: u8) -> Result<Self, anyhow::Error>;

    /// Sets class symbols from cycle patterns.
    ///
    /// Classes in permutation groups are determined by the cycle patterns of their elements. The
    /// number of classes for $`Sym(n)`$ is the number of integer partitions of $`n`$.
    fn set_class_symbols_from_cycle_patterns(&mut self) {
        log::debug!("Assigning class symbols from cycle patterns...");
        let class_symbols = (0..self.class_number())
            .map(|cc_i| {
                let rep_ele = self.get_cc_transversal(cc_i).unwrap_or_else(|| {
                    panic!("No representative element found for conjugacy class index `{cc_i}`.")
                });
                let cycle_pattern = rep_ele.cycle_pattern();
                let mut cycle_pattern_count: Vec<(u8, u8)> =
                    Vec::with_capacity(cycle_pattern.len());
                let mut i = 0u8;
                while i < u8::try_from(cycle_pattern.len()).unwrap() {
                    let mut j = i + 1;
                    while j < u8::try_from(cycle_pattern.len()).unwrap()
                        && cycle_pattern[usize::from(j)] == cycle_pattern[usize::from(i)]
                    {
                        j += 1;
                    }
                    cycle_pattern_count.push((cycle_pattern[usize::from(i)], j - i));
                    i = j;
                }
                let cycle_pattern_str = cycle_pattern_count
                    .iter()
                    .map(|(length, count)| {
                        if *count > 1 {
                            format!("{length}^{count}")
                        } else {
                            length.to_string()
                        }
                    })
                    .collect_vec()
                    .join("ยท");
                let size = self
                    .class_size(cc_i)
                    .unwrap_or_else(|| panic!("Unknown size for conjugacy class index `{i}`."));
                PermutationClassSymbol::new(
                    format!("{size}||{cycle_pattern_str}||").as_str(),
                    Some(vec![rep_ele]),
                )
                .unwrap_or_else(|_| {
                    panic!(
                        "Unable to construct a class symbol from `{size}||{cycle_pattern_str}||`"
                    )
                })
            })
            .collect_vec();
        self.set_class_symbols(&class_symbols);
        log::debug!("Assigning class symbols from cycle patterns... Done.");
    }

    /// Reorders and relabels the rows and columns of the constructed character table using
    /// permutation-specific rules and conventions.
    fn canonicalise_character_table(&mut self);
}

// =====================
// Trait implementations
// =====================

// -----------------------
// UnitaryRepresentedGroup
// -----------------------

impl PermutationGroupProperties
    for UnitaryRepresentedGroup<Permutation<u8>, PermutationIrrepSymbol, PermutationClassSymbol<u8>>
{
    fn from_rank(rank: u8) -> Result<Self, anyhow::Error> {
        assert!(rank > 0, "A permutation rank must be a positive integer.");
        assert!(
            rank <= 20,
            "Permutations of rank more than 20 will not be representable."
        );
        log::debug!("Generating all permutations of rank {rank}...");
        let perms = (0..rank)
            .permutations(usize::from(rank))
            .map(Permutation::from_image)
            .collect::<Result<Vec<_>, _>>()?;
        log::debug!("Generating all permutations of rank {rank}... Done.");
        log::debug!("Collecting all permutations into a unitary-represented group...");
        let mut group = UnitaryRepresentedGroup::<
            Permutation<u8>,
            PermutationIrrepSymbol,
            PermutationClassSymbol<u8>,
        >::new(format!("Sym({rank})").as_str(), perms)?;
        log::debug!("Collecting all permutations into a unitary-represented group... Done.");
        group.set_class_symbols_from_cycle_patterns();
        group.construct_irrep_character_table();
        group.canonicalise_character_table();
        Ok(group)
    }

    fn canonicalise_character_table(&mut self) {
        let old_chartab = self.character_table();
        let class_symbols = (0..self.class_number())
            .map(|i| {
                self.get_cc_symbol_of_index(i)
                    .expect("Unable to retrieve all class symbols.")
            })
            .collect_vec();
        let (char_arr, sorted_fs) = sort_perm_irreps(
            &old_chartab.array().view(),
            &old_chartab.frobenius_schurs.values().copied().collect_vec(),
        );
        let ordered_irreps = deduce_permutation_irrep_symbols(&char_arr.view());
        self.set_irrep_character_table(RepCharacterTable::new(
            &old_chartab.name,
            &ordered_irreps,
            &class_symbols,
            &[],
            char_arr,
            &sorted_fs,
        ));
    }
}

// ----------------
// PermutationGroup
// ----------------

impl GroupProperties for PermutationGroup {
    type GroupElement = Permutation<u8>;
    type ElementCollection = PermutationIterator<u8>;

    fn name(&self) -> String {
        format!("Sym({})", self.rank)
    }

    fn finite_subgroup_name(&self) -> Option<&String> {
        None
    }

    fn get_index(&self, index: usize) -> Option<Self::GroupElement> {
        Permutation::from_lehmer_index(index, self.rank).ok()
    }

    fn get_index_of(&self, g: &Self::GroupElement) -> Option<usize> {
        if g.rank() != self.rank {
            None
        } else {
            Some(g.lehmer_index(None))
        }
    }

    fn contains(&self, g: &Self::GroupElement) -> bool {
        g.rank() == self.rank
    }

    fn elements(&self) -> &Self::ElementCollection {
        &self.perms_iter
    }

    fn is_abelian(&self) -> bool {
        self.perms_iter.clone().enumerate().all(|(i, gi)| {
            (0..i).all(|j| {
                let gj = self
                    .get_index(j)
                    .unwrap_or_else(|| panic!("Element with index `{j}` not found."));
                (&gi) * (&gj) == (&gj) * (&gi)
            })
        })
    }

    fn order(&self) -> usize {
        usize::from(self.rank).checked_factorial().unwrap()
    }

    fn cayley_table(&self) -> Option<&Array2<usize>> {
        None
    }
}

/// Returns all partitions of an integer.
///
/// The partitions are generated in lexicographic order, then, within each partition, the
/// sub-partitions are arranged in decreasing order.
///
/// See [here](https://jeromekelleher.net/generating-integer-partitions.html) for the algorithm.
///
/// # Arguments
///
/// * `n` - An integer.
///
/// # Returns
///
/// An indexset containing the partition vectors.
fn partitions(n: u8) -> IndexSet<Vec<u8>> {
    if n == 0 {
        IndexSet::from([vec![0]])
    } else {
        let mut res: IndexSet<Vec<u8>> = IndexSet::new();
        let mut a = vec![0; usize::from(n) + 1];
        let mut k = 1;
        let mut y = n - 1;
        while k != 0 {
            let mut x = a[k - 1] + 1;
            k -= 1;
            while 2 * x <= y {
                a[k] = x;
                y -= x;
                k += 1;
            }
            let l = k + 1;
            while x <= y {
                a[k] = x;
                a[l] = y;
                let mut cycle = a[0..k + 2].to_vec();
                cycle.reverse();
                res.insert(cycle);
                x += 1;
                y -= 1;
            }
            a[k] = x + y;
            y = x + y - 1;
            let mut cycle = a[0..k + 1].to_vec();
            cycle.reverse();
            res.insert(cycle);
        }
        res
    }
}

impl ClassProperties for PermutationGroup {
    type ClassSymbol = PermutationClassSymbol<u8>;

    /// Computes the class structure of this permutation group based on cycle patterns.
    fn compute_class_structure(&mut self) -> Result<(), anyhow::Error> {
        log::debug!("Finding all partitions of {}...", self.rank);
        self.cycle_patterns = Some(partitions(self.rank));
        log::debug!("Finding all partitions of {}... Done.", self.rank);

        log::debug!("Finding conjugacy classes based on cycle patterns in parallel...");
        let mut conjugacy_classes = vec![HashSet::<usize>::new(); self.class_number()];

        // For ranks up to 20, the number of classes is at most 627. `u16` is then plenty to store
        // each class index. This helps reduce memory cost a little bit.
        let e2ccs: Vec<(usize, u16)> = (0..self.order())
            .into_par_iter()
            .map(|i| {
                let p_i = Permutation::from_lehmer_index(i, self.rank).map_err(|_| {
                    format_err!(
                        "Unable to construct a permutation of rank {} with Lehmer index {i}.",
                        self.rank
                    )
                })?;
                let cycle_pattern = p_i.cycle_pattern();
                let c_i = self
                    .cycle_patterns
                    .as_ref()
                    .expect("Cycle patterns not found.")
                    .get_index_of(&cycle_pattern)
                    .ok_or_else(|| {
                        format_err!("Cycle pattern {cycle_pattern:?} is not valid in this group.")
                    })
                    .and_then(|index| u16::try_from(index).map_err(|err| format_err!(err)))?;
                Ok::<_, anyhow::Error>((i, c_i))
            })
            .collect::<Result<Vec<_>, _>>()?;
        e2ccs.into_iter().for_each(|(i, c_i)| {
            conjugacy_classes[usize::from(c_i)].insert(i);
        });
        self.conjugacy_classes = Some(conjugacy_classes);
        log::debug!("Finding conjugacy classes based on cycle patterns in parallel... Done.");
        Ok(())
    }

    fn get_cc_index(&self, cc_idx: usize) -> Option<&HashSet<usize>> {
        self.conjugacy_classes
            .as_ref()
            .map(|conjugacy_classes| &conjugacy_classes[cc_idx])
    }

    fn filter_cc_symbols<P: FnMut(&Self::ClassSymbol) -> bool>(
        &self,
        predicate: P,
    ) -> Vec<Self::ClassSymbol> {
        self.conjugacy_class_symbols
            .as_ref()
            .expect("No class structure found.")
            .iter()
            .cloned()
            .filter(predicate)
            .collect::<Vec<_>>()
    }

    fn get_cc_of_element_index(&self, e_idx: usize) -> Option<usize> {
        let perm = Permutation::from_lehmer_index(e_idx, self.rank).ok()?;
        self.cycle_patterns
            .as_ref()
            .expect("Cycle patterns not found.")
            .get_index_of(&perm.cycle_pattern())
    }

    fn get_cc_transversal(&self, cc_idx: usize) -> Option<Self::GroupElement> {
        let cycle_pattern = self
            .cycle_patterns
            .as_ref()
            .expect("Cycle patterns not found.")
            .get_index(cc_idx)?;
        let cycles = cycle_pattern
            .iter()
            .scan(0u8, |start, &l| {
                let cycle = (*start..*start + l).collect::<Vec<u8>>();
                *start += l;
                Some(cycle)
            })
            .collect_vec();
        Permutation::from_cycles(&cycles).ok()
    }

    fn get_index_of_cc_symbol(&self, cc_sym: &Self::ClassSymbol) -> Option<usize> {
        self.conjugacy_class_symbols
            .as_ref()
            .expect("Conjugacy class symbols not found.")
            .get_index_of(cc_sym)
    }

    fn get_cc_symbol_of_index(&self, cc_idx: usize) -> Option<Self::ClassSymbol> {
        self.conjugacy_class_symbols
            .as_ref()
            .expect("Conjugacy class symbols not found.")
            .get_index(cc_idx)
            .cloned()
    }

    fn set_class_symbols(&mut self, cc_symbols: &[Self::ClassSymbol]) {
        self.conjugacy_class_symbols = Some(cc_symbols.iter().cloned().collect());
    }

    fn get_inverse_cc(&self, cc_idx: usize) -> Option<usize> {
        Some(cc_idx)
    }

    fn class_number(&self) -> usize {
        self.cycle_patterns
            .as_ref()
            .expect("Cycle patterns not found.")
            .len()
    }

    /// Computes the class size given a class index.
    ///
    /// The closed form for a conjugacy class of a particular cycle pattern is given
    /// [here](https://math.stackexchange.com/questions/140311/number-of-permutations-for-a-cycle-type).
    fn class_size(&self, cc_idx: usize) -> Option<usize> {
        let cycle_pattern = self
            .cycle_patterns
            .as_ref()
            .expect("Cycle patterns not found.")
            .get_index(cc_idx)?;
        let mut cycle_pattern_count: Vec<(u8, u8)> = Vec::with_capacity(cycle_pattern.len());
        let mut i = 0u8;
        while i < u8::try_from(cycle_pattern.len()).unwrap() {
            let mut j = i + 1;
            while j < u8::try_from(cycle_pattern.len()).unwrap()
                && cycle_pattern[usize::from(j)] == cycle_pattern[usize::from(i)]
            {
                j += 1;
            }
            cycle_pattern_count.push((cycle_pattern[usize::from(i)], j - i));
            i = j;
        }
        let denom = cycle_pattern_count
            .into_iter()
            .map(|(l, m)| {
                usize::from(l).pow(u32::from(m)) * usize::from(m).checked_factorial().unwrap()
            })
            .product();
        Some(
            usize::from(self.rank)
                .checked_factorial()
                .unwrap()
                .div_euclid(denom),
        )
    }
}

impl CharacterProperties for PermutationGroup {
    type RowSymbol = PermutationIrrepSymbol;
    type CharTab = RepCharacterTable<PermutationIrrepSymbol, PermutationClassSymbol<u8>>;

    fn character_table(&self) -> &Self::CharTab {
        self.irrep_character_table
            .as_ref()
            .expect("Irrep character table not found for this group.")
    }

    fn unitary_represented(&self) -> bool {
        true
    }
}

impl IrrepCharTabConstruction for PermutationGroup {
    fn set_irrep_character_table(&mut self, chartab: Self::CharTab) {
        self.irrep_character_table = Some(chartab)
    }
}

impl PermutationGroupProperties for PermutationGroup {
    fn from_rank(rank: u8) -> Result<Self, anyhow::Error> {
        assert!(rank > 0, "A permutation rank must be a positive integer.");
        assert!(
            rank <= 20,
            "Permutations of rank more than 20 will not be representable."
        );
        log::debug!("Initialising lazy iterator for permutations of rank {rank}...");
        let perms_iter = PermutationIterator {
            rank,
            raw_perm_indices: (0..usize::from(rank).checked_factorial().unwrap()),
        };
        let mut group = PermutationGroup::builder()
            .rank(rank)
            .perms_iter(perms_iter)
            .build()
            .expect("Unable to construct a `PermutationGroup`.");
        log::debug!("Initialising lazy iterator for permutations of rank {rank}... Done.");
        group.compute_class_structure()?;
        group.set_class_symbols_from_cycle_patterns();
        group.construct_irrep_character_table();
        group.canonicalise_character_table();
        Ok(group)
    }

    fn canonicalise_character_table(&mut self) {
        let old_chartab = self.character_table();
        let class_symbols = (0..self.class_number())
            .map(|i| {
                self.get_cc_symbol_of_index(i)
                    .expect("Unable to retrieve all class symbols.")
            })
            .collect_vec();
        let (char_arr, sorted_fs) = sort_perm_irreps(
            &old_chartab.array().view(),
            &old_chartab.frobenius_schurs.values().copied().collect_vec(),
        );
        let ordered_irreps = deduce_permutation_irrep_symbols(&char_arr.view());
        self.set_irrep_character_table(RepCharacterTable::new(
            &old_chartab.name,
            &ordered_irreps,
            &class_symbols,
            &[],
            char_arr,
            &sorted_fs,
        ));
    }
}