1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//! Symbols for permutations, conjugacy classes, and irreducible representations.

use std::fmt;
use std::hash::{Hash, Hasher};
use std::str::FromStr;

use derive_builder::Builder;
use itertools::Itertools;
use ndarray::{Array2, ArrayView2, Axis};
use num_traits::ToPrimitive;
use serde::{Deserialize, Serialize};

use crate::chartab::character::Character;
use crate::chartab::chartab_symbols::{
    disambiguate_linspace_symbols, CollectionSymbol, GenericSymbol, GenericSymbolParsingError,
    LinearSpaceSymbol, MathematicalSymbol,
};
use crate::chartab::unityroot::UnityRoot;
use crate::permutation::{Permutation, PermutationRank};

// ==================
// Struct definitions
// ==================

// ----------------------
// PermutationClassSymbol
// ----------------------

/// Structure to handle conjugacy class symbols.
#[derive(Builder, Debug, Clone, Serialize, Deserialize)]
pub struct PermutationClassSymbol<T: PermutationRank> {
    /// The generic part of the symbol.
    generic_symbol: GenericSymbol,

    /// A representative element in the class.
    representatives: Option<Vec<Permutation<T>>>,
}

impl<T: PermutationRank> PartialEq for PermutationClassSymbol<T> {
    fn eq(&self, other: &Self) -> bool {
        self.generic_symbol == other.generic_symbol
    }
}

impl<T: PermutationRank> Eq for PermutationClassSymbol<T> {}

impl<T: PermutationRank> Hash for PermutationClassSymbol<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.generic_symbol.hash(state);
    }
}

impl<T: PermutationRank> PermutationClassSymbol<T> {
    fn builder() -> PermutationClassSymbolBuilder<T> {
        PermutationClassSymbolBuilder::default()
    }

    /// Creates a class symbol from a string and a representative element.
    ///
    /// Some possible conjugacy class symbols:
    ///
    /// ```text
    /// "1||(5)(2)(1)||"
    /// "1||(4)(1)|^(2)|"
    /// "12||(2)(2)(1)|^(5)|"
    /// ```
    ///
    /// Note that the prefactor is required.
    ///
    /// # Arguments
    ///
    /// * `symstr` - A string to be parsed to give a class symbol.
    /// * `rep` - An optional representative element for this class.
    ///
    /// # Returns
    ///
    /// A [`Result`] wrapping the constructed class symbol.
    ///
    /// # Panics
    ///
    /// Panics when unable to construct a class symbol from the specified string.
    ///
    /// # Errors
    ///
    /// Errors when the string contains no parsable class size prefactor, or when the string cannot
    /// be parsed as a generic symbol.
    pub fn new(
        symstr: &str,
        reps: Option<Vec<Permutation<T>>>,
    ) -> Result<Self, GenericSymbolParsingError> {
        let generic_symbol = GenericSymbol::from_str(symstr)?;
        if generic_symbol.multiplicity().is_none() {
            Err(GenericSymbolParsingError(format!(
                "{symstr} contains no class size prefactor."
            )))
        } else {
            Ok(Self::builder()
                .generic_symbol(generic_symbol)
                .representatives(reps)
                .build()
                .unwrap_or_else(|_| panic!("Unable to construct a class symbol from `{symstr}`.")))
        }
    }
}

impl<T: PermutationRank> MathematicalSymbol for PermutationClassSymbol<T> {
    /// The main part of the symbol, which denotes the cycle pattern of the class.
    fn main(&self) -> String {
        self.generic_symbol.main()
    }

    /// The pre-superscript part of the symbol, which is empty.
    fn presuper(&self) -> String {
        String::new()
    }

    /// The pre-subscript part of the symbol, which is empty.
    fn presub(&self) -> String {
        String::new()
    }

    /// The post-superscript part of the symbol, which is empty.
    fn postsuper(&self) -> String {
        String::new()
    }

    /// The post-subscript part of the symbol, which is empty.
    fn postsub(&self) -> String {
        String::new()
    }

    /// The prefactor part of the symbol, which denotes the size of the class.
    fn prefactor(&self) -> String {
        self.generic_symbol.prefactor()
    }

    /// The postfactor part of the symbol, which is empty.
    fn postfactor(&self) -> String {
        String::new()
    }

    /// The number of times the representative elements are 'duplicated' to give the size of the
    /// class.
    fn multiplicity(&self) -> Option<usize> {
        self.generic_symbol.multiplicity()
    }
}

impl<T: PermutationRank> CollectionSymbol for PermutationClassSymbol<T> {
    type CollectionElement = Permutation<T>;

    fn from_reps(
        symstr: &str,
        reps: Option<Vec<Self::CollectionElement>>,
    ) -> Result<Self, GenericSymbolParsingError> {
        Self::new(symstr, reps)
    }

    fn representative(&self) -> Option<&Self::CollectionElement> {
        self.representatives.as_ref().map(|reps| &reps[0])
    }

    fn representatives(&self) -> Option<&Vec<Self::CollectionElement>> {
        self.representatives.as_ref()
    }
}

impl<T: PermutationRank> fmt::Display for PermutationClassSymbol<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.generic_symbol)
    }
}

// ----------------------
// PermutationIrrepSymbol
// ----------------------

/// Structure to handle permutation irreducible representation symbols. This will be converted to a
/// suitable representation of Young tableaux symbols in the future.
#[derive(Builder, Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Serialize, Deserialize)]
pub struct PermutationIrrepSymbol {
    /// The generic part of the symbol.
    #[builder(setter(custom))]
    generic_symbol: GenericSymbol,

    /// The dimensionality of the irreducible representation.
    #[builder(setter(custom), default = "None")]
    dim: Option<usize>,
}

impl PermutationIrrepSymbolBuilder {
    fn generic_symbol(&mut self, sym: GenericSymbol) -> &mut Self {
        assert!(
            sym.main() == "Sym" || sym.main() == "Alt" || sym.main() == "Λ",
            "The main part of a permutation irrep symbol can only be `Sym`, `Alt`, or `Λ`.",
        );
        self.generic_symbol = Some(sym);
        self
    }

    fn dim(&mut self, dim: usize) -> &mut Self {
        let main = self
            .generic_symbol
            .as_ref()
            .expect("The generic symbol has not been set for this permutation symbol.")
            .main();
        if main == "Sym" || main == "Alt" {
            assert_eq!(
                dim, 1,
                "A `{main}` permutation irrep must be one-dimensional."
            );
        }
        self.dim = Some(Some(dim));
        self
    }
}

impl PermutationIrrepSymbol {
    fn builder() -> PermutationIrrepSymbolBuilder {
        PermutationIrrepSymbolBuilder::default()
    }

    /// Construct a permutation irrep symbol from a string and its dimensionality.
    ///
    /// Some permissible permutation irrep symbols:
    ///
    /// ```text
    /// "||Sym||"
    /// "||Alt||"
    /// "||Λ|_(1)|"
    /// ```
    ///
    /// # Arguments
    ///
    /// * `symstr` - A string to be parsed to give a permutation symbol.
    ///
    /// # Errors
    ///
    /// Errors when the string cannot be parsed as a generic symbol.
    pub fn new(symstr: &str, dim: usize) -> Result<Self, PermutationIrrepSymbolBuilderError> {
        let generic_symbol = GenericSymbol::from_str(symstr)
            .unwrap_or_else(|_| panic!("Unable to parse {symstr} as a generic symbol."));
        Self::builder()
            .generic_symbol(generic_symbol)
            .dim(dim)
            .build()
    }
}

impl MathematicalSymbol for PermutationIrrepSymbol {
    /// The main part of the symbol, which primarily denotes the dimensionality of the irrep space.
    fn main(&self) -> String {
        self.generic_symbol.main()
    }

    /// The pre-superscript part of the symbol, which can be used to denote antiunitary symmetries
    /// or spin multiplicities.
    fn presuper(&self) -> String {
        self.generic_symbol.presuper()
    }

    fn presub(&self) -> String {
        self.generic_symbol.presub()
    }

    /// The post-superscript part of the symbol, which denotes reflection parity.
    fn postsuper(&self) -> String {
        self.generic_symbol.postsuper()
    }

    /// The post-subscript part of the symbol, which denotes inversion parity when available and
    /// which disambiguates similar irreps.
    fn postsub(&self) -> String {
        self.generic_symbol.postsub()
    }

    /// The prefactor part of the symbol, which is always `"1"` implicitly because of irreducibility.
    fn prefactor(&self) -> String {
        String::new()
    }

    /// The postfactor part of the symbol, which is always empty.
    fn postfactor(&self) -> String {
        String::new()
    }

    /// The dimensionality of the irreducible representation.
    fn multiplicity(&self) -> Option<usize> {
        self.dim
    }
}

impl FromStr for PermutationIrrepSymbol {
    type Err = PermutationIrrepSymbolBuilderError;

    /// Parses a string representing a permutation irrep symbol.
    ///
    /// Some permissible permutation irrep symbols:
    ///
    /// ```text
    /// "||Sym||"
    /// "||Alt||"
    /// "||Λ|_(1)|"
    /// ```
    ///
    /// # Arguments
    ///
    /// * `symstr` - A string to be parsed to give a permutation symbol.
    ///
    /// # Errors
    ///
    /// Errors when the string cannot be parsed as a generic symbol.
    fn from_str(symstr: &str) -> Result<Self, Self::Err> {
        let generic_symbol = GenericSymbol::from_str(symstr)
            .unwrap_or_else(|_| panic!("Unable to parse {symstr} as a generic symbol."));
        Self::builder().generic_symbol(generic_symbol).build()
    }
}

impl LinearSpaceSymbol for PermutationIrrepSymbol {
    fn dimensionality(&self) -> usize {
        self.dim
            .unwrap_or_else(|| panic!("Unknown dimensionality for permutation irrep `{self}`."))
    }

    fn set_dimensionality(&mut self, dim: usize) -> bool {
        if dim == 1 {
            if self.main() == "Sym" || self.main() == "Alt" {
                self.dim = Some(dim);
                true
            } else {
                false
            }
        } else if self.main() != "Sym" && self.main() != "Alt" {
            self.dim = Some(dim);
            true
        } else {
            false
        }
    }
}

impl fmt::Display for PermutationIrrepSymbol {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "|{}{}|{}",
            self.main(),
            if self.main() == "Λ" {
                self.dim
                    .map(|dim| dim.to_string())
                    .unwrap_or_else(|| "?".to_string())
            } else {
                String::new()
            },
            if self.postsub().is_empty() {
                String::new()
            } else {
                format!("_({})", self.postsub())
            }
        )
    }
}

// =======
// Methods
// =======

/// Sorts permutation irreps based on their dimensionalities.
///
/// # Arguments
///
/// * `char_arr` - A view of the array of characters for which the irreps are to be sorted.
/// * `frobenius_schur_indicators` - The associated Frobenius--Schur indicators with the irreps.
///
/// # Returns
///
/// An array of characters where the irreps have been sorted, and a vector of the associated
/// Frobenius--Schur indicators that have also been similarly sorted.
pub(super) fn sort_perm_irreps(
    char_arr: &ArrayView2<Character>,
    frobenius_schur_indicators: &[i8],
) -> (Array2<Character>, Vec<i8>) {
    log::debug!("Sorting permutation irreducible representations...");
    let n_rows = char_arr.nrows();
    let col_idxs = (0..n_rows).collect_vec();
    let sort_arr = char_arr.select(Axis(1), &col_idxs);

    let sort_row_indices: Vec<_> = (0..n_rows)
        .sorted_by(|&i, &j| {
            let keys_i = sort_arr.row(i).iter().cloned().collect_vec();
            let keys_j = sort_arr.row(j).iter().cloned().collect_vec();
            keys_i
                .partial_cmp(&keys_j)
                .unwrap_or_else(|| panic!("`{keys_i:?}` and `{keys_j:?}` cannot be compared."))
        })
        .collect();
    let char_arr = char_arr.select(Axis(0), &sort_row_indices);
    let old_fs = frobenius_schur_indicators.iter().collect::<Vec<_>>();
    let sorted_fs = sort_row_indices.iter().map(|&i| *old_fs[i]).collect_vec();
    log::debug!("Sorting permutation irreducible representations... Done.");
    (char_arr, sorted_fs)
}

/// Deduces the permutation irrep symbols based on the characters.
///
/// This classifies each irrep into either `Sym` for the totally symmetric irrep, `Alt` for the
/// alternating one-dimensional irrep, or `Λ` for all higher-dimensional irreps. No attempt is made
/// to assign Young diagrams to the irreps.
///
/// # Arguments
///
/// * `char_arr` - An array of characters.
///
/// # Returns
///
/// A vector of permutation irrep symbols.
pub(super) fn deduce_permutation_irrep_symbols(
    char_arr: &ArrayView2<Character>,
) -> Vec<PermutationIrrepSymbol> {
    log::debug!("Generating permutation irreducible representation symbols...");

    // First pass: assign irrep symbols from rules as much as possible.
    log::debug!("First pass: assign symbols from rules");

    let one = Character::new(&[(UnityRoot::new(0u32, 1u32), 1)]);
    let raw_irrep_symbols = char_arr.rows().into_iter().map(|irrep| {
        let dim = irrep[0].clone();
        if dim == one {
            if irrep.iter().all(|chr| chr.clone() == one) {
                PermutationIrrepSymbol::new("||Sym||", 1).unwrap_or_else(|_| {
                    panic!("Unable to construct permutation irrep symbol `||Sym||`")
                })
            } else {
                PermutationIrrepSymbol::new("||Alt||", 1).unwrap_or_else(|_| {
                    panic!("Unable to construct permutation irrep symbol `||Alt||`")
                })
            }
        } else {
            let dim_c = dim.complex_value();
            assert!(
                approx::relative_eq!(dim_c.im, 0.0)
                    && approx::relative_eq!(dim_c.re.round(), dim_c.re)
                    && dim_c.re.round() > 0.0
            );
            let dim_u = dim_c.re
                .round()
                .to_usize()
                .expect("Unable to convert the dimensionality of an irrep to `usize`.");
            PermutationIrrepSymbol::new("||Λ||", dim_u).unwrap_or_else(|_| {
                    panic!("Unable to construct permutation irrep symbol `||Λ||` with dimensionality `{dim_u}`.")
                })
        }
    });

    // Second pass: disambiguate identical cases not distinguishable by rules
    log::debug!("Second pass: disambiguate identical cases not distinguishable by rules");
    let irrep_symbols = disambiguate_linspace_symbols(raw_irrep_symbols);

    log::debug!("Generating permutation irreducible representation symbols... Done.");
    irrep_symbols
}