1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
//! Sandbox driver for symmetry analysis of RealSpaceFunctiones.

use std::fmt;
use std::ops::Mul;

use anyhow::{self, bail, format_err};
use derive_builder::Builder;
use duplicate::duplicate_item;
use nalgebra::Point3;
use ndarray::Array1;
use ndarray_linalg::types::Lapack;
use num_complex::{Complex, ComplexFloat};
use num_traits::Float;
use serde::{Deserialize, Serialize};

use crate::analysis::{
    log_overlap_eigenvalues, EigenvalueComparisonMode, Orbit, Overlap, ProjectionDecomposition,
    RepAnalysis,
};
use crate::chartab::chartab_group::CharacterProperties;
use crate::chartab::SubspaceDecomposable;
use crate::drivers::representation_analysis::angular_function::{
    find_angular_function_representation, AngularFunctionRepAnalysisParams,
};
use crate::drivers::representation_analysis::{
    fn_construct_magnetic_group, fn_construct_unitary_group, log_cc_transversal,
    CharacterTableDisplay, MagneticSymmetryAnalysisKind,
};
use crate::drivers::symmetry_group_detection::SymmetryGroupDetectionResult;
use crate::drivers::QSym2Driver;
use crate::group::{GroupProperties, MagneticRepresentedGroup, UnitaryRepresentedGroup};
use crate::io::format::{
    log_subtitle, nice_bool, qsym2_output, write_subtitle, write_title, QSym2Output,
};
use crate::sandbox::target::real_space_function::real_space_function_analysis::RealSpaceFunctionSymmetryOrbit;
use crate::sandbox::target::real_space_function::RealSpaceFunction;
use crate::symmetry::symmetry_group::{
    MagneticRepresentedSymmetryGroup, SymmetryGroupProperties, UnitaryRepresentedSymmetryGroup,
};
use crate::symmetry::symmetry_transformation::SymmetryTransformationKind;

#[cfg(test)]
#[path = "real_space_function_tests.rs"]
mod real_space_function_tests;

// ==================
// Struct definitions
// ==================

// ----------
// Parameters
// ----------

const fn default_true() -> bool {
    true
}
const fn default_symbolic() -> Option<CharacterTableDisplay> {
    Some(CharacterTableDisplay::Symbolic)
}

/// Structure containing control parameters for real-space function representation analysis.
#[derive(Clone, Builder, Debug, Serialize, Deserialize)]
pub struct RealSpaceFunctionRepAnalysisParams<T: From<f64>> {
    /// Threshold for checking if subspace multiplicities are integral.
    pub integrality_threshold: T,

    /// Threshold for determining zero eigenvalues in the orbit overlap matrix.
    pub linear_independence_threshold: T,

    /// Option indicating if the magnetic group is to be used for symmetry analysis, and if so,
    /// whether unitary representations or unitary-antiunitary corepresentations should be used.
    #[builder(default = "None")]
    #[serde(default)]
    pub use_magnetic_group: Option<MagneticSymmetryAnalysisKind>,

    /// Boolean indicating if the double group is to be used for symmetry analysis.
    #[builder(default = "false")]
    #[serde(default)]
    pub use_double_group: bool,

    /// Boolean indicating if the Cayley table of the group, if available, should be used to speed
    /// up the computation of orbit overlap matrices.
    #[builder(default = "true")]
    #[serde(default = "default_true")]
    pub use_cayley_table: bool,

    /// The kind of symmetry transformation to be applied on the reference real-space function to
    /// generate the orbit for symmetry analysis.
    #[builder(default = "SymmetryTransformationKind::Spatial")]
    #[serde(default)]
    pub symmetry_transformation_kind: SymmetryTransformationKind,

    /// Option indicating if the character table of the group used for symmetry analysis is to be
    /// printed out.
    #[builder(default = "Some(CharacterTableDisplay::Symbolic)")]
    #[serde(default = "default_symbolic")]
    pub write_character_table: Option<CharacterTableDisplay>,

    /// Boolean indicating if the eigenvalues of the orbit overlap matrix are to be printed out.
    #[builder(default = "true")]
    #[serde(default = "default_true")]
    pub write_overlap_eigenvalues: bool,

    /// The comparison mode for filtering out orbit overlap eigenvalues.
    #[builder(default = "EigenvalueComparisonMode::Modulus")]
    #[serde(default)]
    pub eigenvalue_comparison_mode: EigenvalueComparisonMode,

    /// The finite order to which any infinite-order symmetry element is reduced, so that a finite
    /// subgroup of an infinite group can be used for the symmetry analysis.
    #[builder(default = "None")]
    #[serde(default)]
    pub infinite_order_to_finite: Option<u32>,
}

impl<T> RealSpaceFunctionRepAnalysisParams<T>
where
    T: Float + From<f64>,
{
    /// Returns a builder to construct a [`RealSpaceFunctionRepAnalysisParams`] structure.
    pub fn builder() -> RealSpaceFunctionRepAnalysisParamsBuilder<T> {
        RealSpaceFunctionRepAnalysisParamsBuilder::default()
    }
}

impl Default for RealSpaceFunctionRepAnalysisParams<f64> {
    fn default() -> Self {
        Self::builder()
            .integrality_threshold(1e-7)
            .linear_independence_threshold(1e-7)
            .build()
            .expect("Unable to construct a default `RealSpaceFunctionRepAnalysisParams<f64>`.")
    }
}

impl<T> fmt::Display for RealSpaceFunctionRepAnalysisParams<T>
where
    T: From<f64> + fmt::LowerExp + fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(
            f,
            "Integrality threshold: {:.3e}",
            self.integrality_threshold
        )?;
        writeln!(
            f,
            "Linear independence threshold: {:.3e}",
            self.linear_independence_threshold
        )?;
        writeln!(
            f,
            "Orbit eigenvalue comparison mode: {}",
            self.eigenvalue_comparison_mode
        )?;
        writeln!(
            f,
            "Write overlap eigenvalues: {}",
            nice_bool(self.write_overlap_eigenvalues)
        )?;
        writeln!(f)?;
        writeln!(
            f,
            "Use magnetic group for analysis: {}",
            match self.use_magnetic_group {
                None => "no",
                Some(MagneticSymmetryAnalysisKind::Representation) =>
                    "yes, using unitary representations",
                Some(MagneticSymmetryAnalysisKind::Corepresentation) =>
                    "yes, using magnetic corepresentations",
            }
        )?;
        writeln!(
            f,
            "Use double group for analysis: {}",
            nice_bool(self.use_double_group)
        )?;
        writeln!(
            f,
            "Use Cayley table for orbit overlap matrices: {}",
            nice_bool(self.use_cayley_table)
        )?;
        if let Some(finite_order) = self.infinite_order_to_finite {
            writeln!(f, "Infinite order to finite: {finite_order}")?;
        }
        writeln!(
            f,
            "Symmetry transformation kind: {}",
            self.symmetry_transformation_kind
        )?;
        writeln!(f)?;
        writeln!(
            f,
            "Write character table: {}",
            if let Some(chartab_display) = self.write_character_table.as_ref() {
                format!("yes, {}", chartab_display.to_string().to_lowercase())
            } else {
                "no".to_string()
            }
        )?;

        Ok(())
    }
}

// ------
// Result
// ------

/// Structure to contain real-space function representation analysis results.
#[derive(Clone, Builder)]
pub struct RealSpaceFunctionRepAnalysisResult<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    /// The control parameters used to obtain this set of real-space function representation
    /// analysis results.
    parameters: &'a RealSpaceFunctionRepAnalysisParams<<T as ComplexFloat>::Real>,

    /// The RealSpaceFunction being analysed.
    real_space_function: &'a RealSpaceFunction<T, F>,

    /// The group used for the representation analysis.
    group: G,

    /// The deduced symmetry of the real-space function.
    real_space_function_symmetry:
        Result<<G::CharTab as SubspaceDecomposable<T>>::Decomposition, String>,
}

impl<'a, G, T, F> RealSpaceFunctionRepAnalysisResult<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    /// Returns a builder to construct a new [`RealSpaceFunctionRepAnalysisResultBuilder`] structure.
    fn builder() -> RealSpaceFunctionRepAnalysisResultBuilder<'a, G, T, F> {
        RealSpaceFunctionRepAnalysisResultBuilder::default()
    }
}

impl<'a, G, T, F> fmt::Display for RealSpaceFunctionRepAnalysisResult<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug + fmt::Display,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write_subtitle(f, "Orbit-based symmetry analysis results")?;
        writeln!(f)?;
        writeln!(
            f,
            "> Group: {} ({})",
            self.group
                .finite_subgroup_name()
                .map(|subgroup_name| format!("{} > {}", self.group.name(), subgroup_name))
                .unwrap_or(self.group.name()),
            self.group.group_type().to_string().to_lowercase()
        )?;
        writeln!(f)?;
        writeln!(f, "> Overall real-space function result")?;
        writeln!(
            f,
            "  Grid size: {} {}",
            self.real_space_function.grid_points().len(),
            if self.real_space_function.grid_points().len() == 1 {
                "point"
            } else {
                "points"
            }
        )?;
        writeln!(
            f,
            "  Symmetry: {}",
            self.real_space_function_symmetry
                .as_ref()
                .map(|s| s.to_string())
                .unwrap_or_else(|err| format!("-- ({err})"))
        )?;
        writeln!(f)?;

        Ok(())
    }
}

impl<'a, G, T, F> fmt::Debug for RealSpaceFunctionRepAnalysisResult<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug + fmt::Display,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "{self}")
    }
}

impl<'a, G, T, F> RealSpaceFunctionRepAnalysisResult<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug + fmt::Display,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    /// Returns the real-space function symmetry obtained from the analysis result.
    pub fn real_space_function_symmetry(
        &self,
    ) -> &Result<<G::CharTab as SubspaceDecomposable<T>>::Decomposition, String> {
        &self.real_space_function_symmetry
    }
}

// ------
// Driver
// ------

// ~~~~~~~~~~~~~~~~~
// Struct definition
// ~~~~~~~~~~~~~~~~~

/// Driver structure for performing representation analysis on real-space functions.
#[derive(Clone, Builder)]
#[builder(build_fn(validate = "Self::validate"))]
pub struct RealSpaceFunctionRepAnalysisDriver<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    /// The control parameters for real-space function representation analysis.
    parameters: &'a RealSpaceFunctionRepAnalysisParams<<T as ComplexFloat>::Real>,

    /// The real-space function to be analysed.
    real_space_function: &'a RealSpaceFunction<T, F>,

    /// The result from symmetry-group detection that will then be used to construct the full group
    /// for the definition and analysis of the real-space function.
    symmetry_group: &'a SymmetryGroupDetectionResult,

    /// The weight used in the evaluation of the inner products between real-space functions.
    weight: &'a Array1<T>,

    /// The control parameters for symmetry analysis of angular functions.
    angular_function_parameters: &'a AngularFunctionRepAnalysisParams,

    /// The result of the real-space function representation analysis.
    #[builder(setter(skip), default = "None")]
    result: Option<RealSpaceFunctionRepAnalysisResult<'a, G, T, F>>,
}

impl<'a, G, T, F> RealSpaceFunctionRepAnalysisDriverBuilder<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    fn validate(&self) -> Result<(), String> {
        let _ = self
            .real_space_function
            .ok_or("No real-space function specified.".to_string())?;

        let params = self
            .parameters
            .ok_or("No real-space function representation analysis parameters found.".to_string())?;

        let sym_res = self
            .symmetry_group
            .ok_or("No symmetry group information found.".to_string())?;

        let sym = if params.use_magnetic_group.is_some() {
            sym_res
                .magnetic_symmetry
                .as_ref()
                .ok_or("Magnetic symmetry requested for representation analysis, but no magnetic symmetry found.")?
        } else {
            &sym_res.unitary_symmetry
        };

        if sym.is_infinite() && params.infinite_order_to_finite.is_none() {
            Err(
                format!(
                    "Representation analysis cannot be performed using the entirety of the infinite group `{}`. \
                    Consider setting the parameter `infinite_order_to_finite` to restrict to a finite subgroup instead.",
                    sym.group_name.as_ref().expect("No symmetry group name found.")
                )
            )
        } else {
            Ok(())
        }
    }
}

// ~~~~~~~~~~~~~~~~~~~~~~
// Struct implementations
// ~~~~~~~~~~~~~~~~~~~~~~

// Generic for all symmetry groups G and determinant numeric type T
// ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

impl<'a, G, T, F> RealSpaceFunctionRepAnalysisDriver<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    /// Returns a builder to construct a [`RealSpaceFunctionRepAnalysisDriver`] structure.
    pub fn builder() -> RealSpaceFunctionRepAnalysisDriverBuilder<'a, G, T, F> {
        RealSpaceFunctionRepAnalysisDriverBuilder::default()
    }
}

// Specific for unitary-represented symmetry groups, but generic for function numeric type T
// '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

impl<'a, T, F> RealSpaceFunctionRepAnalysisDriver<'a, UnitaryRepresentedSymmetryGroup, T, F>
where
    T: ComplexFloat + Lapack + Sync + Send,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug + Sync + Send,
    for<'b> Complex<f64>: Mul<&'b T, Output = Complex<f64>>,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    fn_construct_unitary_group!(
        /// Constructs the unitary-represented group (which itself can be unitary or magnetic) ready
        /// for real-space function representation analysis.
        construct_unitary_group
    );
}

// Specific for magnetic-represented symmetry groups, but generic for function numeric type T
// ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

impl<'a, T, F> RealSpaceFunctionRepAnalysisDriver<'a, MagneticRepresentedSymmetryGroup, T, F>
where
    T: ComplexFloat + Lapack + Sync + Send,
    <T as ComplexFloat>::Real: From<f64> + Sync + Send + fmt::LowerExp + fmt::Debug,
    for<'b> Complex<f64>: Mul<&'b T, Output = Complex<f64>>,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    fn_construct_magnetic_group!(
        /// Constructs the magnetic-represented group (which itself can only be magnetic) ready for
        /// real-space function corepresentation analysis.
        construct_magnetic_group
    );
}

// Specific for unitary-represented and magnetic-represented symmetry groups and determinant numeric types f64 and C128
// ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

#[duplicate_item(
    duplicate!{
        [ dtype_nested; [f64]; [Complex<f64>] ]
        [
            gtype_ [ UnitaryRepresentedSymmetryGroup ]
            dtype_ [ dtype_nested ]
            doc_sub_ [ "Performs representation analysis using a unitary-represented group and stores the result." ]
            analyse_fn_ [ analyse_representation ]
            construct_group_ [ self.construct_unitary_group()? ]
            calc_projections_ [
                log_subtitle("Real-space function projection decompositions");
                qsym2_output!("");
                qsym2_output!("  Projections are defined w.r.t. the following inner product:");
                qsym2_output!("    {}", real_space_function_orbit.origin().overlap_definition());
                qsym2_output!("");
                real_space_function_orbit
                    .projections_to_string(
                        &real_space_function_orbit.calc_projection_compositions()?,
                        params.integrality_threshold,
                    )
                    .log_output_display();
                qsym2_output!("");
            ]
        ]
    }
    duplicate!{
        [ dtype_nested; [f64]; [Complex<f64>] ]
        [
            gtype_ [ MagneticRepresentedSymmetryGroup ]
            dtype_ [ dtype_nested ]
            doc_sub_ [ "Performs corepresentation analysis using a magnetic-represented group and stores the result." ]
            analyse_fn_ [ analyse_corepresentation ]
            construct_group_ [ self.construct_magnetic_group()? ]
            calc_projections_ [ ]
        ]
    }
)]
impl<'a, F> RealSpaceFunctionRepAnalysisDriver<'a, gtype_, dtype_, F>
where
    F: Clone + Sync + Send + Fn(&Point3<f64>) -> dtype_,
{
    #[doc = doc_sub_]
    fn analyse_fn_(&mut self) -> Result<(), anyhow::Error> {
        let params = self.parameters;
        let group = construct_group_;
        log_cc_transversal(&group);
        let _ = find_angular_function_representation(&group, self.angular_function_parameters);

        let mut real_space_function_orbit = RealSpaceFunctionSymmetryOrbit::builder()
            .origin(self.real_space_function)
            .group(&group)
            .integrality_threshold(params.integrality_threshold)
            .linear_independence_threshold(params.linear_independence_threshold)
            .symmetry_transformation_kind(params.symmetry_transformation_kind.clone())
            .eigenvalue_comparison_mode(params.eigenvalue_comparison_mode.clone())
            .build()?;
        let real_space_function_symmetry = real_space_function_orbit
            .calc_smat(Some(self.weight), None, params.use_cayley_table)
            .and_then(|real_space_function_orb| real_space_function_orb.normalise_smat())
            .map_err(|err| err.to_string())
            .and_then(|real_space_function_orb| {
                real_space_function_orb
                    .calc_xmat(false)
                    .map_err(|err| err.to_string())?;
                if params.write_overlap_eigenvalues {
                    if let Some(smat_eigvals) = real_space_function_orb.smat_eigvals.as_ref() {
                        log_overlap_eigenvalues(
                            "Real-space function orbit overlap eigenvalues",
                            smat_eigvals,
                            params.linear_independence_threshold,
                            &params.eigenvalue_comparison_mode,
                        );
                        qsym2_output!("");
                    }
                }
                real_space_function_orb
                    .analyse_rep()
                    .map_err(|err| err.to_string())
            });

        { calc_projections_ }

        let result = RealSpaceFunctionRepAnalysisResult::builder()
            .parameters(params)
            .real_space_function(self.real_space_function)
            .group(group)
            .real_space_function_symmetry(real_space_function_symmetry)
            .build()?;
        self.result = Some(result);

        Ok(())
    }
}

// ~~~~~~~~~~~~~~~~~~~~~
// Trait implementations
// ~~~~~~~~~~~~~~~~~~~~~

// Generic for all symmetry groups G and determinant numeric type T
// ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

impl<'a, G, T, F> fmt::Display for RealSpaceFunctionRepAnalysisDriver<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write_title(f, "Real-Space Function Symmetry Analysis")?;
        writeln!(f)?;
        writeln!(f, "{}", self.parameters)?;
        Ok(())
    }
}

impl<'a, G, T, F> fmt::Debug for RealSpaceFunctionRepAnalysisDriver<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: ComplexFloat + Lapack,
    <T as ComplexFloat>::Real: From<f64> + fmt::LowerExp + fmt::Debug,
    F: Clone + Fn(&Point3<f64>) -> T,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        writeln!(f, "{self}")
    }
}

// Specific for unitary/magnetic-represented groups and function numeric type f64/Complex<f64>
// '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

#[duplicate_item(
    duplicate!{
        [ dtype_nested; [f64]; [Complex<f64>] ]
        [
            gtype_ [ UnitaryRepresentedSymmetryGroup ]
            dtype_ [ dtype_nested ]
            analyse_fn_ [ analyse_representation ]
        ]
    }
    duplicate!{
        [ dtype_nested; [f64]; [Complex<f64>] ]
        [
            gtype_ [ MagneticRepresentedSymmetryGroup ]
            dtype_ [ dtype_nested ]
            analyse_fn_ [ analyse_corepresentation ]
        ]
    }
)]
impl<'a, F> QSym2Driver for RealSpaceFunctionRepAnalysisDriver<'a, gtype_, dtype_, F>
where
    F: Clone + Sync + Send + Fn(&Point3<f64>) -> dtype_,
{
    type Params = RealSpaceFunctionRepAnalysisParams<f64>;

    type Outcome = RealSpaceFunctionRepAnalysisResult<'a, gtype_, dtype_, F>;

    fn result(&self) -> Result<&Self::Outcome, anyhow::Error> {
        self.result
            .as_ref()
            .ok_or_else(|| format_err!("No real-space function analysis results found."))
    }

    fn run(&mut self) -> Result<(), anyhow::Error> {
        self.log_output_display();
        self.analyse_fn_()?;
        self.result()?.log_output_display();
        Ok(())
    }
}