1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
//! Implementation of symmetry analysis for real-space functions.

use std::fmt;
use std::ops::Mul;

use anyhow::{self, ensure, format_err, Context};
use approx;
use derive_builder::Builder;
use itertools::Itertools;
use log;
use nalgebra::Point3;
use ndarray::{Array1, Array2, Axis, Ix1};
use ndarray_linalg::{
    eig::Eig,
    eigh::Eigh,
    types::{Lapack, Scalar},
    UPLO,
};
use num_complex::{Complex, ComplexFloat};
use num_traits::{Float, ToPrimitive, Zero};
use rayon::prelude::*;

use crate::analysis::{
    fn_calc_xmat_complex, fn_calc_xmat_real, EigenvalueComparisonMode, Orbit, OrbitIterator,
    Overlap, RepAnalysis,
};
use crate::auxiliary::misc::complex_modified_gram_schmidt;
use crate::chartab::chartab_group::CharacterProperties;
use crate::chartab::{DecompositionError, SubspaceDecomposable};
use crate::io::format::{log_subtitle, qsym2_output, QSym2Output};
use crate::sandbox::target::real_space_function::RealSpaceFunction;
use crate::symmetry::symmetry_element::symmetry_operation::SpecialSymmetryTransformation;
use crate::symmetry::symmetry_group::SymmetryGroupProperties;
use crate::symmetry::symmetry_transformation::{SymmetryTransformable, SymmetryTransformationKind};

// =======
// Overlap
// =======

impl<T, F> Overlap<T, Ix1> for RealSpaceFunction<T, F>
where
    T: ComplexFloat + Lapack + Send + Sync,
    F: Clone + Sync + Send + Fn(&Point3<f64>) -> T,
{
    fn complex_symmetric(&self) -> bool {
        false
    }

    /// Computes the overlap between two real-space functions.
    ///
    /// No attempts are made to check that the grid points between the two real-space functions are
    /// 'compatible'. The overlap is simply evaluated as
    ///
    /// ```math
    ///     \sum_i [\hat{\iota} f_1(\mathbf{r}_{1i})]^* f_2(\mathbf{r}_{2i}) w_i,
    /// ```
    ///
    /// where  $`w_i`$ are weight values.
    ///
    ///
    /// # Errors
    ///
    /// Errors if `self` and `other` have mismatched numbers of grid points or if the number of
    /// weight values does not match the number of grid points.
    fn overlap(
        &self,
        other: &Self,
        metric: Option<&Array1<T>>,
        _: Option<&Array1<T>>,
    ) -> Result<T, anyhow::Error> {
        let weight = metric.ok_or_else(|| {
            format_err!("No weights found for `RealSpaceFunction` overlap calculation.")
        })?;

        ensure!(
            self.grid_points.len() == other.grid_points.len(),
            "Inconsistent number of grid points between `self` and `other`."
        );
        ensure!(
            self.grid_points.len() == weight.len(),
            "Inconsistent number of weight values and grid points."
        );

        let overlap = (0..weight.len())
            .into_par_iter()
            .map(|i| {
                let s_pt = self.grid_points[i];
                let o_pt = other.grid_points[i];
                let w = weight[i];
                match (self.complex_conjugated, other.complex_conjugated) {
                    (false, false) => self.function()(&s_pt).conj() * other.function()(&o_pt) * w,
                    (false, true) => {
                        self.function()(&s_pt).conj() * other.function()(&o_pt).conj() * w
                    }
                    (true, false) => self.function()(&s_pt) * other.function()(&o_pt) * w,
                    (true, true) => self.function()(&s_pt) * other.function()(&o_pt).conj() * w,
                }
            })
            .sum();
        Ok(overlap)
    }

    /// Returns the mathematical definition of the overlap between two real-space functions.
    fn overlap_definition(&self) -> String {
        let k = if self.complex_symmetric() { "κ " } else { "" };
        format!("⟨{k}f_1|f_2⟩ = ∫ [{k}f_1(r)]* w(r) f_2(r) dr    where w(r) is a required weight")
    }
}

// ==============================
// RealSpaceFunctionSymmetryOrbit
// ==============================

// -----------------
// Struct definition
// -----------------

/// Structure to manage symmetry orbits (*i.e.* orbits generated by symmetry groups) of real-space
/// functions.
#[derive(Builder, Clone)]
pub struct RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
where
    G: SymmetryGroupProperties,
    T: ComplexFloat + fmt::Debug + Lapack,
    F: Fn(&Point3<f64>) -> T,
    RealSpaceFunction<T, F>: SymmetryTransformable,
{
    /// The generating symmetry group.
    group: &'a G,

    /// The origin [`RealSpaceFunction`] of the orbit.
    origin: &'a RealSpaceFunction<T, F>,

    /// The threshold for determining zero eigenvalues in the orbit overlap matrix.
    pub(crate) linear_independence_threshold: <T as ComplexFloat>::Real,

    /// The threshold for determining if calculated multiplicities in representation analysis are
    /// integral.
    integrality_threshold: <T as ComplexFloat>::Real,

    /// The kind of transformation determining the way the symmetry operations in the generating
    /// group act on [`Self::origin`].
    symmetry_transformation_kind: SymmetryTransformationKind,

    /// The overlap matrix between the symmetry-equivalent real-space functions in the orbit.
    #[builder(setter(skip), default = "None")]
    smat: Option<Array2<T>>,

    /// The eigenvalues of the overlap matrix between the symmetry-equivalent real-space functions
    /// in the orbit.
    #[builder(setter(skip), default = "None")]
    pub(crate) smat_eigvals: Option<Array1<T>>,

    /// The $`\mathbf{X}`$ matrix for the overlap matrix between the symmetry-equivalent real-space
    /// functions in the orbit.
    ///
    /// See [`RepAnalysis::xmat`] for further information.
    #[builder(setter(skip), default = "None")]
    xmat: Option<Array2<T>>,

    /// An enumerated type specifying the comparison mode for filtering out orbit overlap
    /// eigenvalues.
    eigenvalue_comparison_mode: EigenvalueComparisonMode,
}

// ----------------------------
// Struct method implementation
// ----------------------------

impl<'a, G, T, F> RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    T: ComplexFloat + fmt::Debug + Lapack,
    F: Clone + Fn(&Point3<f64>) -> T,
    RealSpaceFunction<T, F>: SymmetryTransformable,
{
    /// Returns a builder for constructing a new real-space function symmetry orbit.
    pub fn builder() -> RealSpaceFunctionSymmetryOrbitBuilder<'a, G, T, F> {
        RealSpaceFunctionSymmetryOrbitBuilder::default()
    }
}

impl<'a, G, F> RealSpaceFunctionSymmetryOrbit<'a, G, f64, F>
where
    G: SymmetryGroupProperties + Clone,
    F: Clone + Fn(&Point3<f64>) -> f64,
{
    fn_calc_xmat_real!(
        /// Calculates the $`\mathbf{X}`$ matrix for real and symmetric overlap matrix
        /// $`\mathbf{S}`$ between the symmetry-equivalent real-space functions in the orbit.
        ///
        /// The resulting $`\mathbf{X}`$ is stored in the orbit.
        ///
        /// # Arguments
        ///
        /// * `preserves_full_rank` - If `true`, when $`\mathbf{S}`$ is already of full rank, then
        /// $`\mathbf{X}`$ is set to be the identity matrix to avoid mixing the orbit real-space
        /// functions. If `false`, $`\mathbf{X}`$ also orthogonalises $`\mathbf{S}`$ even when it is
        /// already of full rank.
        pub calc_xmat
    );
}

impl<'a, G, T, F> RealSpaceFunctionSymmetryOrbit<'a, G, Complex<T>, F>
where
    G: SymmetryGroupProperties + Clone,
    T: Float + Scalar<Complex = Complex<T>>,
    Complex<T>: ComplexFloat<Real = T> + Scalar<Real = T, Complex = Complex<T>> + Lapack,
    F: Clone + Fn(&Point3<f64>) -> Complex<T>,
    RealSpaceFunction<Complex<T>, F>: SymmetryTransformable + Overlap<Complex<T>, Ix1>,
{
    fn_calc_xmat_complex!(
        /// Calculates the $`\mathbf{X}`$ matrix for complex and symmetric or Hermitian overlap
        /// matrix $`\mathbf{S}`$ between the symmetry-equivalent real-space functions in the orbit.
        ///
        /// The resulting $`\mathbf{X}`$ is stored in the orbit.
        ///
        /// # Arguments
        ///
        /// * `preserves_full_rank` - If `true`, when $`\mathbf{S}`$ is already of full rank, then
        /// $`\mathbf{X}`$ is set to be the identity matrix to avoid mixing the orbit real-space
        /// functions. If `false`, $`\mathbf{X}`$ also orthogonalises $`\mathbf{S}`$ even when it is
        /// already of full rank.
        pub calc_xmat
    );
}

// ---------------------
// Trait implementations
// ---------------------

// ~~~~~
// Orbit
// ~~~~~

impl<'a, G, T, F> Orbit<G, RealSpaceFunction<T, F>> for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    T: ComplexFloat + fmt::Debug + Lapack,
    F: Fn(&Point3<f64>) -> T,
    RealSpaceFunction<T, F>: SymmetryTransformable,
{
    type OrbitIter = OrbitIterator<'a, G, RealSpaceFunction<T, F>>;

    fn group(&self) -> &'a G {
        self.group
    }

    fn origin(&self) -> &RealSpaceFunction<T, F> {
        self.origin
    }

    fn iter(&self) -> Self::OrbitIter {
        OrbitIterator::new(
            self.group,
            self.origin,
            match self.symmetry_transformation_kind {
                SymmetryTransformationKind::Spatial => |op, real_space_function| {
                    real_space_function.sym_transform_spatial(op).with_context(|| {
                        format!("Unable to apply `{op}` spatially on the origin real-space function")
                    })
                },
                SymmetryTransformationKind::SpatialWithSpinTimeReversal => {
                    |op, real_space_function| {
                        real_space_function.sym_transform_spatial_with_spintimerev(op).with_context(|| {
                        format!("Unable to apply `{op}` spatially (with spin-including time-reversal) on the origin real-space function")
                    })
                    }
                }
                SymmetryTransformationKind::Spin => {
                    |op, real_space_function| {
                        real_space_function.sym_transform_spin(op).with_context(|| {
                        format!("Unable to apply `{op}` spin-wise on the origin real-space function")
                    })
                    }
                }
                SymmetryTransformationKind::SpinSpatial => |op, real_space_function| {
                    real_space_function.sym_transform_spin_spatial(op).with_context(|| {
                        format!("Unable to apply `{op}` spin-spatially on the origin real-space function")
                    })
                },
            },
        )
    }
}

// ~~~~~~~~~~~
// RepAnalysis
// ~~~~~~~~~~~

impl<'a, G, T, F> RepAnalysis<G, RealSpaceFunction<T, F>, T, Ix1>
    for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: Lapack
        + ComplexFloat<Real = <T as Scalar>::Real>
        + fmt::Debug
        + Send
        + Sync
        + Mul<<T as ComplexFloat>::Real, Output = T>,
    <T as ComplexFloat>::Real: fmt::Debug
        + Zero
        + From<u16>
        + ToPrimitive
        + approx::RelativeEq<<T as ComplexFloat>::Real>
        + approx::AbsDiffEq<Epsilon = <T as Scalar>::Real>,
    F: Clone + Sync + Send + Fn(&Point3<f64>) -> T,
    RealSpaceFunction<T, F>: SymmetryTransformable,
{
    fn set_smat(&mut self, smat: Array2<T>) {
        self.smat = Some(smat)
    }

    fn smat(&self) -> Option<&Array2<T>> {
        self.smat.as_ref()
    }

    fn xmat(&self) -> &Array2<T> {
        self.xmat
            .as_ref()
            .expect("Orbit overlap orthogonalisation matrix not found.")
    }

    fn norm_preserving_scalar_map(&self, i: usize) -> Result<fn(T) -> T, anyhow::Error> {
        if self.origin.complex_symmetric() {
            Err(format_err!("`norm_preserving_scalar_map` is currently not implemented for complex symmetric overlaps."))
        } else {
            if self
                .group
                .get_index(i)
                .unwrap_or_else(|| panic!("Group operation index `{i}` not found."))
                .contains_time_reversal()
            {
                Ok(ComplexFloat::conj)
            } else {
                Ok(|x| x)
            }
        }
    }

    fn integrality_threshold(&self) -> <T as ComplexFloat>::Real {
        self.integrality_threshold
    }

    fn eigenvalue_comparison_mode(&self) -> &EigenvalueComparisonMode {
        &self.eigenvalue_comparison_mode
    }

    /// Reduces the representation or corepresentation spanned by the real-space functions in the
    /// orbit to a direct sum of the irreducible representations or corepresentations of the
    /// generating symmetry group.
    ///
    /// # Returns
    ///
    /// The decomposed result.
    ///
    /// # Errors
    ///
    /// Errors if the decomposition fails, *e.g.* because one or more calculated multiplicities
    /// are non-integral.
    fn analyse_rep(
        &self,
    ) -> Result<
        <<G as CharacterProperties>::CharTab as SubspaceDecomposable<T>>::Decomposition,
        DecompositionError,
    > {
        log::debug!("Analysing representation symmetry for a real-space function...");
        let chis = self
            .calc_characters()
            .map_err(|err| DecompositionError(err.to_string()))?;
        log::debug!("Characters calculated.");
        log_subtitle("Real-space function orbit characters");
        qsym2_output!("");
        self.characters_to_string(&chis, self.integrality_threshold)
            .log_output_display();
        qsym2_output!("");

        let res = self.group().character_table().reduce_characters(
            &chis.iter().map(|(cc, chi)| (cc, *chi)).collect::<Vec<_>>(),
            self.integrality_threshold(),
        );
        log::debug!("Characters reduced.");
        log::debug!("Analysing representation symmetry for a real-space function... Done.");
        res
    }
}