qsym2/sandbox/target/real_space_function/
real_space_function_analysis.rs1use std::fmt;
4use std::ops::Mul;
5
6use anyhow::{self, ensure, format_err, Context};
7use approx;
8use derive_builder::Builder;
9use itertools::Itertools;
10use log;
11use nalgebra::Point3;
12use ndarray::{Array1, Array2, Axis, Ix1};
13use ndarray_linalg::{
14 eig::Eig,
15 eigh::Eigh,
16 types::{Lapack, Scalar},
17 UPLO,
18};
19use num_complex::{Complex, ComplexFloat};
20use num_traits::{Float, ToPrimitive, Zero};
21use rayon::prelude::*;
22
23use crate::analysis::{
24 fn_calc_xmat_complex, fn_calc_xmat_real, EigenvalueComparisonMode, Orbit, OrbitIterator,
25 Overlap, RepAnalysis,
26};
27use crate::auxiliary::misc::complex_modified_gram_schmidt;
28use crate::chartab::chartab_group::CharacterProperties;
29use crate::chartab::{DecompositionError, SubspaceDecomposable};
30use crate::io::format::{log_subtitle, qsym2_output, QSym2Output};
31use crate::sandbox::target::real_space_function::RealSpaceFunction;
32use crate::symmetry::symmetry_element::symmetry_operation::SpecialSymmetryTransformation;
33use crate::symmetry::symmetry_group::SymmetryGroupProperties;
34use crate::symmetry::symmetry_transformation::{SymmetryTransformable, SymmetryTransformationKind};
35
36impl<T, F> Overlap<T, Ix1> for RealSpaceFunction<T, F>
41where
42 T: ComplexFloat + Lapack + Send + Sync,
43 F: Clone + Sync + Send + Fn(&Point3<f64>) -> T,
44{
45 fn complex_symmetric(&self) -> bool {
46 false
47 }
48
49 fn overlap(
66 &self,
67 other: &Self,
68 metric: Option<&Array1<T>>,
69 _: Option<&Array1<T>>,
70 ) -> Result<T, anyhow::Error> {
71 let weight = metric.ok_or_else(|| {
72 format_err!("No weights found for `RealSpaceFunction` overlap calculation.")
73 })?;
74
75 ensure!(
76 self.grid_points.len() == other.grid_points.len(),
77 "Inconsistent number of grid points between `self` and `other`."
78 );
79 ensure!(
80 self.grid_points.len() == weight.len(),
81 "Inconsistent number of weight values and grid points."
82 );
83
84 let overlap = (0..weight.len())
85 .into_par_iter()
86 .map(|i| {
87 let s_pt = self.grid_points[i];
88 let o_pt = other.grid_points[i];
89 let w = weight[i];
90 match (self.complex_conjugated, other.complex_conjugated) {
91 (false, false) => self.function()(&s_pt).conj() * other.function()(&o_pt) * w,
92 (false, true) => {
93 self.function()(&s_pt).conj() * other.function()(&o_pt).conj() * w
94 }
95 (true, false) => self.function()(&s_pt) * other.function()(&o_pt) * w,
96 (true, true) => self.function()(&s_pt) * other.function()(&o_pt).conj() * w,
97 }
98 })
99 .sum();
100 Ok(overlap)
101 }
102
103 fn overlap_definition(&self) -> String {
105 let k = if self.complex_symmetric() { "κ " } else { "" };
106 format!("⟨{k}f_1|f_2⟩ = ∫ [{k}f_1(r)]* w(r) f_2(r) dr where w(r) is a required weight")
107 }
108}
109
110#[derive(Builder, Clone)]
121pub struct RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
122where
123 G: SymmetryGroupProperties,
124 T: ComplexFloat + fmt::Debug + Lapack,
125 F: Fn(&Point3<f64>) -> T,
126 RealSpaceFunction<T, F>: SymmetryTransformable,
127{
128 group: &'a G,
130
131 origin: &'a RealSpaceFunction<T, F>,
133
134 pub(crate) linear_independence_threshold: <T as ComplexFloat>::Real,
136
137 integrality_threshold: <T as ComplexFloat>::Real,
140
141 symmetry_transformation_kind: SymmetryTransformationKind,
144
145 #[builder(setter(skip), default = "None")]
147 smat: Option<Array2<T>>,
148
149 #[builder(setter(skip), default = "None")]
152 pub(crate) smat_eigvals: Option<Array1<T>>,
153
154 #[builder(setter(skip), default = "None")]
159 xmat: Option<Array2<T>>,
160
161 eigenvalue_comparison_mode: EigenvalueComparisonMode,
164}
165
166impl<'a, G, T, F> RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
171where
172 G: SymmetryGroupProperties + Clone,
173 T: ComplexFloat + fmt::Debug + Lapack,
174 F: Clone + Fn(&Point3<f64>) -> T,
175 RealSpaceFunction<T, F>: SymmetryTransformable,
176{
177 pub fn builder() -> RealSpaceFunctionSymmetryOrbitBuilder<'a, G, T, F> {
179 RealSpaceFunctionSymmetryOrbitBuilder::default()
180 }
181}
182
183impl<'a, G, F> RealSpaceFunctionSymmetryOrbit<'a, G, f64, F>
184where
185 G: SymmetryGroupProperties + Clone,
186 F: Clone + Fn(&Point3<f64>) -> f64,
187{
188 fn_calc_xmat_real!(
189 pub calc_xmat
201 );
202}
203
204impl<'a, G, T, F> RealSpaceFunctionSymmetryOrbit<'a, G, Complex<T>, F>
205where
206 G: SymmetryGroupProperties + Clone,
207 T: Float + Scalar<Complex = Complex<T>>,
208 Complex<T>: ComplexFloat<Real = T> + Scalar<Real = T, Complex = Complex<T>> + Lapack,
209 F: Clone + Fn(&Point3<f64>) -> Complex<T>,
210 RealSpaceFunction<Complex<T>, F>: SymmetryTransformable + Overlap<Complex<T>, Ix1>,
211{
212 fn_calc_xmat_complex!(
213 pub calc_xmat
225 );
226}
227
228impl<'a, G, T, F> Orbit<G, RealSpaceFunction<T, F>> for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
237where
238 G: SymmetryGroupProperties + Clone,
239 T: ComplexFloat + fmt::Debug + Lapack,
240 F: Fn(&Point3<f64>) -> T,
241 RealSpaceFunction<T, F>: SymmetryTransformable,
242{
243 type OrbitIter = OrbitIterator<'a, G, RealSpaceFunction<T, F>>;
244
245 fn group(&self) -> &'a G {
246 self.group
247 }
248
249 fn origin(&self) -> &RealSpaceFunction<T, F> {
250 self.origin
251 }
252
253 fn iter(&self) -> Self::OrbitIter {
254 OrbitIterator::new(
255 self.group,
256 self.origin,
257 match self.symmetry_transformation_kind {
258 SymmetryTransformationKind::Spatial => |op, real_space_function| {
259 real_space_function.sym_transform_spatial(op).with_context(|| {
260 format!("Unable to apply `{op}` spatially on the origin real-space function")
261 })
262 },
263 SymmetryTransformationKind::SpatialWithSpinTimeReversal => {
264 |op, real_space_function| {
265 real_space_function.sym_transform_spatial_with_spintimerev(op).with_context(|| {
266 format!("Unable to apply `{op}` spatially (with spin-including time-reversal) on the origin real-space function")
267 })
268 }
269 }
270 SymmetryTransformationKind::Spin => {
271 |op, real_space_function| {
272 real_space_function.sym_transform_spin(op).with_context(|| {
273 format!("Unable to apply `{op}` spin-wise on the origin real-space function")
274 })
275 }
276 }
277 SymmetryTransformationKind::SpinSpatial => |op, real_space_function| {
278 real_space_function.sym_transform_spin_spatial(op).with_context(|| {
279 format!("Unable to apply `{op}` spin-spatially on the origin real-space function")
280 })
281 },
282 },
283 )
284 }
285}
286
287impl<'a, G, T, F> RepAnalysis<G, RealSpaceFunction<T, F>, T, Ix1>
292 for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>
293where
294 G: SymmetryGroupProperties + Clone,
295 G::CharTab: SubspaceDecomposable<T>,
296 T: Lapack
297 + ComplexFloat<Real = <T as Scalar>::Real>
298 + fmt::Debug
299 + Send
300 + Sync
301 + Mul<<T as ComplexFloat>::Real, Output = T>,
302 <T as ComplexFloat>::Real: fmt::Debug
303 + Zero
304 + From<u16>
305 + ToPrimitive
306 + approx::RelativeEq<<T as ComplexFloat>::Real>
307 + approx::AbsDiffEq<Epsilon = <T as Scalar>::Real>,
308 F: Clone + Sync + Send + Fn(&Point3<f64>) -> T,
309 RealSpaceFunction<T, F>: SymmetryTransformable,
310{
311 fn set_smat(&mut self, smat: Array2<T>) {
312 self.smat = Some(smat)
313 }
314
315 fn smat(&self) -> Option<&Array2<T>> {
316 self.smat.as_ref()
317 }
318
319 fn xmat(&self) -> &Array2<T> {
320 self.xmat
321 .as_ref()
322 .expect("Orbit overlap orthogonalisation matrix not found.")
323 }
324
325 fn norm_preserving_scalar_map(&self, i: usize) -> Result<fn(T) -> T, anyhow::Error> {
326 if self.origin.complex_symmetric() {
327 Err(format_err!("`norm_preserving_scalar_map` is currently not implemented for complex symmetric overlaps."))
328 } else {
329 if self
330 .group
331 .get_index(i)
332 .unwrap_or_else(|| panic!("Group operation index `{i}` not found."))
333 .contains_time_reversal()
334 {
335 Ok(ComplexFloat::conj)
336 } else {
337 Ok(|x| x)
338 }
339 }
340 }
341
342 fn integrality_threshold(&self) -> <T as ComplexFloat>::Real {
343 self.integrality_threshold
344 }
345
346 fn eigenvalue_comparison_mode(&self) -> &EigenvalueComparisonMode {
347 &self.eigenvalue_comparison_mode
348 }
349
350 fn analyse_rep(
363 &self,
364 ) -> Result<
365 <<G as CharacterProperties>::CharTab as SubspaceDecomposable<T>>::Decomposition,
366 DecompositionError,
367 > {
368 log::debug!("Analysing representation symmetry for a real-space function...");
369 let chis = self
370 .calc_characters()
371 .map_err(|err| DecompositionError(err.to_string()))?;
372 log::debug!("Characters calculated.");
373 log_subtitle("Real-space function orbit characters");
374 qsym2_output!("");
375 self.characters_to_string(&chis, self.integrality_threshold)
376 .log_output_display();
377 qsym2_output!("");
378
379 let res = self.group().character_table().reduce_characters(
380 &chis.iter().map(|(cc, chi)| (cc, *chi)).collect::<Vec<_>>(),
381 self.integrality_threshold(),
382 );
383 log::debug!("Characters reduced.");
384 log::debug!("Analysing representation symmetry for a real-space function... Done.");
385 res
386 }
387}