1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
//! Molecular symmetry element detection for spherical tops.

use std::collections::HashSet;

use anyhow::{self, ensure, format_err};
use itertools::{self, Itertools};
use log;
use nalgebra::Vector3;

use crate::auxiliary::geometry;
use crate::rotsym::RotationalSymmetry;
use crate::symmetry::symmetry_element::SIG;
use crate::symmetry::symmetry_element_order::{ElementOrder, ORDER_1, ORDER_2};

use super::{PreSymmetry, Symmetry};

impl Symmetry {
    /// Locates and adds all possible and distinct $`C_2`$ axes present in the
    /// molecule in `presym`, provided that `presym` is a spherical top.
    ///
    /// # Arguments
    ///
    /// * `presym` - A pre-symmetry-analysis structure containing information about the molecular
    /// system.
    /// * `tr` - A flag indicating if time reversal should also be considered. A time-reversed
    /// symmetry element will only be considered if its non-time-reversed version turns out to be
    /// not a symmetry element.
    ///
    /// # Returns
    ///
    /// The number of distinct $`C_2`$ axes located.
    fn search_c2_spherical(
        &mut self,
        presym: &PreSymmetry,
        tr: bool,
    ) -> Result<u32, anyhow::Error> {
        ensure!(
            matches!(presym.rotational_symmetry, RotationalSymmetry::Spherical),
            "Unexpected rotational symmetry -- expected: {}, actual: {}",
            RotationalSymmetry::Spherical,
            presym.rotational_symmetry
        );

        let start_guard: u32 = 30;
        let stable_c2_ratio: f64 = 0.5;
        let c2_termination_counts = HashSet::from([3, 9, 15]);

        let mut count_c2: u32 = 0;
        let mut count_c2_stable: u32 = 0;
        let mut n_pairs: u32 = 0;

        let sea_groups = &presym.sea_groups;
        for sea_group in sea_groups.iter() {
            if sea_group.len() < 2 {
                continue;
            }
            for atom2s in sea_group.iter().combinations(2) {
                n_pairs += 1;
                let atom_i_pos = atom2s[0].coordinates;
                let atom_j_pos = atom2s[1].coordinates;

                // Case B: C2 might cross through any two atoms
                if let Some(proper_kind) = presym.check_proper(&ORDER_2, &atom_i_pos.coords, tr) {
                    if self.add_proper(
                        ORDER_2,
                        &atom_i_pos.coords,
                        false,
                        presym.recentred_molecule.threshold,
                        proper_kind.contains_time_reversal(),
                    ) {
                        count_c2 += 1;
                        count_c2_stable = 0;
                    }
                }

                // Case A: C2 might cross through the midpoint of two atoms
                let midvec = 0.5 * (atom_i_pos.coords + atom_j_pos.coords);
                if let Some(proper_kind) = presym.check_proper(&ORDER_2, &midvec, tr) {
                    if midvec.norm() > presym.recentred_molecule.threshold
                        && self.add_proper(
                            ORDER_2,
                            &midvec,
                            false,
                            presym.recentred_molecule.threshold,
                            proper_kind.contains_time_reversal(),
                        )
                    {
                        count_c2 += 1;
                        count_c2_stable = 0;
                    }
                }

                // Check if count_c2 has reached stability.
                if (f64::from(count_c2_stable)) / (f64::from(n_pairs)) > stable_c2_ratio
                    && n_pairs > start_guard
                    && c2_termination_counts.contains(&count_c2)
                {
                    break;
                }
                count_c2_stable += 1;
            }

            if c2_termination_counts.contains(&count_c2) {
                break;
            }
        }
        Ok(count_c2)
    }

    /// Performs point-group detection analysis for a spherical top.
    ///
    /// # Arguments
    ///
    /// * `presym` - A pre-symmetry-analysis structure containing information about the molecular
    /// system.
    /// * `tr` - A flag indicating if time reversal should also be considered. A time-reversed
    /// symmetry element will only be considered if its non-time-reversed version turns out to be
    /// not a symmetry element.
    #[allow(clippy::too_many_lines)]
    pub(super) fn analyse_spherical(
        &mut self,
        presym: &PreSymmetry,
        tr: bool,
    ) -> Result<(), anyhow::Error> {
        ensure!(
            matches!(presym.rotational_symmetry, RotationalSymmetry::Spherical),
            "Unexpected rotational symmetry -- expected: {}, actual: {}",
            RotationalSymmetry::Spherical,
            presym.rotational_symmetry
        );
        if presym.recentred_molecule.atoms.len() == 1 {
            self.set_group_name("O(3)".to_owned());
            self.add_proper(
                ElementOrder::Inf,
                &Vector3::z(),
                true,
                presym.recentred_molecule.threshold,
                false,
            );
            self.add_proper(
                ElementOrder::Inf,
                &Vector3::y(),
                true,
                presym.recentred_molecule.threshold,
                false,
            );
            self.add_proper(
                ElementOrder::Inf,
                &Vector3::x(),
                true,
                presym.recentred_molecule.threshold,
                false,
            );
            self.add_improper(
                ElementOrder::Int(2),
                &Vector3::z(),
                true,
                SIG,
                None,
                presym.recentred_molecule.threshold,
                false,
            );
            return Ok(());
        }

        // Locating all possible and distinct C2 axes
        let count_c2 = self.search_c2_spherical(presym, tr)?;
        log::debug!("Located {} C2 axes.", count_c2);
        ensure!(
            HashSet::from([3, 9, 15]).contains(&count_c2),
            "Unexpected number of C2 axes -- expected: 3 or 9 or 15, actual: {count_c2}"
        );

        // Locating improper elements
        match count_c2 {
            3 => {
                // Tetrahedral, so either T, Td, or Th
                log::debug!("Tetrahedral family.");
                if let Some(improper_kind) =
                    presym.check_improper(&ORDER_2, &Vector3::z(), &SIG, tr)
                {
                    // Inversion centre
                    log::debug!("Located an inversion centre.");
                    self.set_group_name("Th".to_owned());
                    ensure!(
                        self.add_improper(
                            ORDER_2,
                            &Vector3::z(),
                            false,
                            SIG,
                            None,
                            presym.recentred_molecule.threshold,
                            improper_kind.contains_time_reversal()
                        ),
                        "Expected improper element not added."
                    );
                    ensure!(
                        self.add_improper(
                            ORDER_2,
                            &Vector3::z(),
                            true,
                            SIG,
                            None,
                            presym.recentred_molecule.threshold,
                            improper_kind.contains_time_reversal()
                        ),
                        "Expected improper generator not added."
                    );
                } else {
                    let mut c2s = self
                        .get_proper(&ORDER_2)
                        .ok_or_else(|| format_err!("No C2 elements found."))?
                        .into_iter()
                        .take(2)
                        .cloned()
                        .collect_vec()
                        .into_iter();
                    let normal = c2s
                        .next()
                        .ok_or_else(|| format_err!("No C2 elements found."))?
                        .raw_axis()
                        + c2s
                            .next()
                            .ok_or_else(|| {
                                format_err!("Two C2 elements expected, but only one found.")
                            })?
                            .raw_axis();
                    if presym.check_improper(&ORDER_1, &normal, &SIG, tr).is_some() {
                        // σd
                        log::debug!("Located σd.");
                        self.set_group_name("Td".to_owned());
                        let sigmad_normals = {
                            let mut axes = vec![];
                            for c2s in self
                                .get_proper(&ORDER_2)
                                .ok_or_else(|| format_err!("No C2 elements found."))?
                                .iter()
                                .combinations(2)
                            {
                                let axis_p = c2s[0].raw_axis() + c2s[1].raw_axis();
                                let p_improper_check =
                                    presym.check_improper(&ORDER_1, &axis_p, &SIG, tr);
                                ensure!(
                                    p_improper_check.is_some(),
                                    "Expected mirror plane perpendicular to {axis_p} not found."
                                );
                                axes.push((
                                    axis_p,
                                    p_improper_check
                                        .ok_or_else(|| format_err!("Expected mirror plane perpendicular to {axis_p} not found."))?
                                        .contains_time_reversal(),
                                ));

                                let axis_m = c2s[0].raw_axis() - c2s[1].raw_axis();
                                let m_improper_check =
                                    presym.check_improper(&ORDER_1, &axis_m, &SIG, tr);
                                ensure!(
                                    m_improper_check.is_some(),
                                    "Expected mirror plane perpendicular to {axis_m} not found."
                                );
                                axes.push((
                                    axis_m,
                                    m_improper_check
                                        .ok_or_else(|| format_err!("Expected mirror plane perpendicular to {axis_m} not found."))?
                                        .contains_time_reversal(),
                                ));
                            }
                            axes
                        };
                        let sigmad_generator_normal = sigmad_normals[0];
                        for (axis, axis_tr) in sigmad_normals {
                            ensure!(
                                self.add_improper(
                                    ORDER_1,
                                    &axis,
                                    false,
                                    SIG,
                                    Some("d".to_owned()),
                                    presym.recentred_molecule.threshold,
                                    axis_tr
                                ),
                                "Expected improper element not added."
                            );
                        }
                        ensure!(
                            self.add_improper(
                                ORDER_1,
                                &sigmad_generator_normal.0,
                                true,
                                SIG,
                                Some("d".to_owned()),
                                presym.recentred_molecule.threshold,
                                sigmad_generator_normal.1
                            ),
                            "Expected improper generator not added."
                        );
                    } else {
                        // No σd => chiral
                        self.set_group_name("T".to_owned());
                    }
                }
            } // end count_c2 = 3
            9 => {
                // 6 C2 and 3 C4^2; Octahedral, so either O or Oh
                log::debug!("Octahedral family.");
                if let Some(improper_kind) =
                    presym.check_improper(&ORDER_2, &Vector3::z(), &SIG, tr)
                {
                    // Inversion centre
                    log::debug!("Located an inversion centre.");
                    self.set_group_name("Oh".to_owned());
                    ensure!(
                        self.add_improper(
                            ORDER_2,
                            &Vector3::z(),
                            false,
                            SIG,
                            None,
                            presym.recentred_molecule.threshold,
                            improper_kind.contains_time_reversal()
                        ),
                        "Expected improper element not added."
                    );
                    ensure!(
                        self.add_improper(
                            ORDER_2,
                            &Vector3::z(),
                            true,
                            SIG,
                            None,
                            presym.recentred_molecule.threshold,
                            improper_kind.contains_time_reversal()
                        ),
                        "Expected improper generator not added."
                    );
                } else {
                    // No inversion centre => chiral
                    self.set_group_name("O".to_owned());
                }
            } // end count_c2 = 9
            15 => {
                // Icosahedral, so either I or Ih
                log::debug!("Icosahedral family.");
                if let Some(improper_kind) =
                    presym.check_improper(&ORDER_2, &Vector3::z(), &SIG, tr)
                {
                    // Inversion centre
                    log::debug!("Located an inversion centre.");
                    self.set_group_name("Ih".to_owned());
                    ensure!(
                        self.add_improper(
                            ORDER_2,
                            &Vector3::z(),
                            false,
                            SIG,
                            None,
                            presym.recentred_molecule.threshold,
                            improper_kind.contains_time_reversal()
                        ),
                        "Expected improper element not added."
                    );
                    ensure!(
                        self.add_improper(
                            ORDER_2,
                            &Vector3::z(),
                            true,
                            SIG,
                            None,
                            presym.recentred_molecule.threshold,
                            improper_kind.contains_time_reversal()
                        ),
                        "Expected improper generator not added."
                    );
                } else {
                    // No inversion centre => chiral
                    self.set_group_name("I".to_owned());
                }
            } // end count_c2 = 15
            _ => return Err(format_err!("Invalid number of C2 axes.")),
        } // end match count_c2

        // Locating all possible and distinct C3 axes
        let mut count_c3 = 0;
        let mut found_consistent_c3 = false;
        let sea_groups = &presym.sea_groups;
        let order_3 = ElementOrder::Int(3);
        for sea_group in sea_groups.iter() {
            if sea_group.len() < 3 {
                continue;
            }
            if found_consistent_c3 {
                break;
            };
            for atom3s in sea_group.iter().combinations(3) {
                let atom_i = atom3s[0];
                let atom_j = atom3s[1];
                let atom_k = atom3s[2];
                if !geometry::check_regular_polygon(&[atom_i, atom_j, atom_k]) {
                    continue;
                }
                let vec_ij = atom_j.coordinates - atom_i.coordinates;
                let vec_ik = atom_k.coordinates - atom_i.coordinates;
                let vec_normal = vec_ij.cross(&vec_ik);
                ensure!(
                    vec_normal.norm() > presym.recentred_molecule.threshold,
                    "Unexpected zero-norm vector."
                );
                if let Some(proper_kind) = presym.check_proper(&order_3, &vec_normal, tr) {
                    count_c3 += i32::from(self.add_proper(
                        order_3,
                        &vec_normal,
                        false,
                        presym.recentred_molecule.threshold,
                        proper_kind.contains_time_reversal(),
                    ));
                }
                if count_c2 == 3 && count_c3 == 4 {
                    // Tetrahedral, 4 C3 axes
                    found_consistent_c3 = true;
                    break;
                }
                if count_c2 == 9 && count_c3 == 4 {
                    // Octahedral, 4 C3 axes
                    found_consistent_c3 = true;
                    break;
                }
                if count_c2 == 15 && count_c3 == 10 {
                    // Icosahedral, 10 C3 axes
                    found_consistent_c3 = true;
                    break;
                }
            }
        }
        ensure!(
            found_consistent_c3,
            "Unexpected number of C3 axes: {count_c3}."
        );

        if count_c3 == 4 {
            // Tetrahedral or octahedral, C3 axes are also generators.
            let c3s = self
                .get_proper(&order_3)
                .ok_or_else(|| format_err!(" No C3 elements found."))?
                .into_iter()
                .cloned()
                .collect_vec();
            for c3 in &c3s {
                self.add_proper(
                    order_3,
                    c3.raw_axis(),
                    true,
                    presym.recentred_molecule.threshold,
                    c3.contains_time_reversal(),
                );
            }
        }

        // Locating all possible and distinct C4 axes for O and Oh point groups
        if count_c2 == 9 {
            let mut count_c4 = 0;
            let mut found_consistent_c4 = false;
            let sea_groups = &presym.sea_groups;
            let order_4 = ElementOrder::Int(4);
            for sea_group in sea_groups.iter() {
                if sea_group.len() < 4 {
                    continue;
                }
                if found_consistent_c4 {
                    break;
                };
                for atom4s in sea_group.iter().combinations(4) {
                    let atom_i = atom4s[0];
                    let atom_j = atom4s[1];
                    let atom_k = atom4s[2];
                    let atom_l = atom4s[3];
                    if !geometry::check_regular_polygon(&[atom_i, atom_j, atom_k, atom_l]) {
                        continue;
                    }
                    let vec_ij = atom_j.coordinates - atom_i.coordinates;
                    let vec_ik = atom_k.coordinates - atom_i.coordinates;
                    let vec_normal = vec_ij.cross(&vec_ik);
                    ensure!(
                        vec_normal.norm() > presym.recentred_molecule.threshold,
                        "Unexpected zero-norm vector."
                    );
                    if let Some(proper_kind) = presym.check_proper(&order_4, &vec_normal, tr) {
                        count_c4 += i32::from(self.add_proper(
                            order_4,
                            &vec_normal,
                            false,
                            presym.recentred_molecule.threshold,
                            proper_kind.contains_time_reversal(),
                        ));
                    }
                    if count_c4 == 3 {
                        found_consistent_c4 = true;
                        break;
                    }
                }
            }
            ensure!(
                found_consistent_c4,
                "Unexpected number of C4 axes: {count_c4}."
            );

            // Add a C4 as a generator
            let c4 = *self
                .get_proper(&order_4)
                .ok_or_else(|| format_err!(" No C4 elements found."))?
                .iter()
                .next()
                .ok_or_else(|| format_err!("Expected C4 not found."))?;
            let c4_axis = *c4.raw_axis();
            self.add_proper(
                order_4,
                &c4_axis,
                true,
                presym.recentred_molecule.threshold,
                c4.contains_time_reversal(),
            );
        } // end locating C4 axes for O and Oh

        // Locating all possible and distinct C5 axes for I and Ih point groups
        if count_c2 == 15 {
            let mut count_c5 = 0;
            let mut found_consistent_c5 = false;
            let sea_groups = &presym.sea_groups;
            let order_5 = ElementOrder::Int(5);
            for sea_group in sea_groups.iter() {
                if sea_group.len() < 5 {
                    continue;
                }
                if found_consistent_c5 {
                    break;
                };
                for atom5s in sea_group.iter().combinations(5) {
                    let atom_i = atom5s[0];
                    let atom_j = atom5s[1];
                    let atom_k = atom5s[2];
                    let atom_l = atom5s[3];
                    let atom_m = atom5s[4];
                    if !geometry::check_regular_polygon(&[atom_i, atom_j, atom_k, atom_l, atom_m]) {
                        continue;
                    }
                    let vec_ij = atom_j.coordinates - atom_i.coordinates;
                    let vec_ik = atom_k.coordinates - atom_i.coordinates;
                    let vec_normal = vec_ij.cross(&vec_ik);
                    ensure!(
                        vec_normal.norm() > presym.recentred_molecule.threshold,
                        "Unexpected zero-norm vector."
                    );
                    if let Some(proper_kind) = presym.check_proper(&order_5, &vec_normal, tr) {
                        count_c5 += i32::from(self.add_proper(
                            order_5,
                            &vec_normal,
                            false,
                            presym.recentred_molecule.threshold,
                            proper_kind.contains_time_reversal(),
                        ));
                        self.add_proper(
                            order_5,
                            &vec_normal,
                            true,
                            presym.recentred_molecule.threshold,
                            proper_kind.contains_time_reversal(),
                        );
                    }
                    if count_c5 == 6 {
                        found_consistent_c5 = true;
                        break;
                    }
                }
            }
            ensure!(
                found_consistent_c5,
                "Unexpected number of C5 axes: {count_c5}."
            );
        } // end locating C5 axes for I and Ih

        // Locating any other improper rotation axes for the non-chinal groups
        if *self
            .group_name
            .as_ref()
            .ok_or_else(|| format_err!("No point groups found."))?
            == "Td"
        {
            // Locating S4
            let order_4 = ElementOrder::Int(4);
            let improper_s4_axes: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&ORDER_2)
                    .ok_or_else(|| format_err!("Expected C2 elements not found."))?
                    .iter()
                    .filter_map(|c2_ele| {
                        presym
                            .check_improper(&order_4, c2_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_s4 = 0;
            for (s4_axis, s4_axis_tr) in improper_s4_axes {
                count_s4 += i32::from(self.add_improper(
                    order_4,
                    &s4_axis,
                    false,
                    SIG,
                    None,
                    presym.recentred_molecule.threshold,
                    s4_axis_tr,
                ));
            }
            ensure!(count_s4 == 3, "Unexpected number of S4 axes: {count_s4}.");
        }
        // end locating improper axes for Td
        else if *self
            .group_name
            .as_ref()
            .ok_or_else(|| format_err!("No point groups found."))?
            == "Th"
        {
            // Locating σh
            let sigmah_normals: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&ORDER_2)
                    .ok_or_else(|| format_err!("Expected C2 elements not found."))?
                    .iter()
                    .filter_map(|c2_ele| {
                        presym
                            .check_improper(&ORDER_1, c2_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_sigmah = 0;
            for (sigmah_normal, sigmah_normal_tr) in sigmah_normals {
                count_sigmah += i32::from(self.add_improper(
                    ORDER_1,
                    &sigmah_normal,
                    false,
                    SIG,
                    Some("h".to_owned()),
                    presym.recentred_molecule.threshold,
                    sigmah_normal_tr,
                ));
            }
            ensure!(
                count_sigmah == 3,
                "Unexpected number of σh mirror planes: {count_sigmah}."
            );

            // Locating S6
            let order_6 = ElementOrder::Int(6);
            let s6_axes: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&order_3)
                    .ok_or_else(|| format_err!("Expected C3 elements not found."))?
                    .iter()
                    .filter_map(|c3_ele| {
                        presym
                            .check_improper(&order_6, c3_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c3_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_s6 = 0;
            for (s6_axis, s6_axis_tr) in s6_axes {
                count_s6 += i32::from(self.add_improper(
                    order_6,
                    &s6_axis,
                    false,
                    SIG,
                    None,
                    presym.recentred_molecule.threshold,
                    s6_axis_tr,
                ));
            }
            ensure!(count_s6 == 4, "Unexpected number of S6 axes: {count_s6}.");
        }
        // end locating improper axes for Th
        else if *self
            .group_name
            .as_ref()
            .ok_or_else(|| format_err!("No point groups found."))?
            == "Oh"
        {
            // Locating S4
            let order_4 = ElementOrder::Int(4);
            let s4_axes: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&ORDER_2)
                    .ok_or_else(|| format_err!("Expected C2 elements not found."))?
                    .iter()
                    .filter_map(|c2_ele| {
                        presym
                            .check_improper(&order_4, c2_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_s4 = 0;
            for (s4_axis, s4_axis_tr) in &s4_axes {
                count_s4 += i32::from(self.add_improper(
                    order_4,
                    s4_axis,
                    false,
                    SIG,
                    None,
                    presym.recentred_molecule.threshold,
                    *s4_axis_tr,
                ));
            }
            ensure!(count_s4 == 3, "Unexpected number of S4 axes: {count_s4}.");

            let sigmah_axes: Vec<(Vector3<f64>, bool)> = {
                s4_axes
                    .iter()
                    .filter_map(|(sigmah_axis, _)| {
                        presym.check_improper(&ORDER_1, sigmah_axis, &SIG, tr).map(
                            |improper_kind| (*sigmah_axis, improper_kind.contains_time_reversal()),
                        )
                    })
                    .collect()
            };
            let mut count_sigmah = 0;
            for (sigmah_axis, sigmah_axis_tr) in sigmah_axes {
                count_sigmah += i32::from(self.add_improper(
                    ORDER_1,
                    &sigmah_axis,
                    false,
                    SIG,
                    Some("h".to_owned()),
                    presym.recentred_molecule.threshold,
                    sigmah_axis_tr,
                ));
            }
            ensure!(
                count_sigmah == 3,
                "Unexpected number of σh mirror planes: {count_sigmah}."
            );

            // Locating σd
            let sigmad_normals: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&ORDER_2)
                    .ok_or_else(|| format_err!("Expected C2 elements not found."))?
                    .iter()
                    .filter_map(|c2_ele| {
                        if presym
                            .check_improper(&order_4, c2_ele.raw_axis(), &SIG, tr)
                            .is_none()
                        {
                            presym
                                .check_improper(&ORDER_1, c2_ele.raw_axis(), &SIG, tr)
                                .map(|improper_kind| {
                                    (*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
                                })
                        } else {
                            None
                        }
                    })
                    .collect()
            };
            let mut count_sigmad = 0;
            for (sigmad_normal, sigmad_normal_tr) in sigmad_normals {
                count_sigmad += i32::from(self.add_improper(
                    ORDER_1,
                    &sigmad_normal,
                    false,
                    SIG,
                    Some("d".to_owned()),
                    presym.recentred_molecule.threshold,
                    sigmad_normal_tr,
                ));
            }
            ensure!(
                count_sigmad == 6,
                "Unexpected number of σd mirror planes: {count_sigmad}."
            );

            // Locating S6
            let order_6 = ElementOrder::Int(6);
            let s6_axes: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&order_3)
                    .ok_or_else(|| format_err!("Expected C3 elements not found."))?
                    .iter()
                    .filter_map(|c3_ele| {
                        presym
                            .check_improper(&order_6, c3_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c3_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_s6 = 0;
            for (s6_axis, s6_axis_tr) in s6_axes {
                count_s6 += i32::from(self.add_improper(
                    order_6,
                    &s6_axis,
                    false,
                    SIG,
                    None,
                    presym.recentred_molecule.threshold,
                    s6_axis_tr,
                ));
            }
            ensure!(count_s6 == 4, "Unexpected number of S6 axes: {count_s6}.");
        }
        // end locating improper axes for Oh
        else if *self
            .group_name
            .as_ref()
            .ok_or_else(|| format_err!("No point groups found."))?
            == "Ih"
        {
            // Locating S10
            let order_5 = ElementOrder::Int(5);
            let order_10 = ElementOrder::Int(10);
            let s10_axes: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&order_5)
                    .ok_or_else(|| format_err!("Expected C5 elements not found."))?
                    .iter()
                    .filter_map(|c5_ele| {
                        presym
                            .check_improper(&order_10, c5_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c5_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_s10 = 0;
            for (s10_axis, s10_axis_tr) in s10_axes {
                count_s10 += i32::from(self.add_improper(
                    order_10,
                    &s10_axis,
                    false,
                    SIG,
                    None,
                    presym.recentred_molecule.threshold,
                    s10_axis_tr,
                ));
            }
            ensure!(
                count_s10 == 6,
                "Unexpected number of S10 axes: {count_s10}."
            );

            // Locating S6
            let order_6 = ElementOrder::Int(6);
            let s6_axes: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&order_3)
                    .ok_or_else(|| format_err!("Expected C3 elements not found."))?
                    .iter()
                    .filter_map(|c3_ele| {
                        presym
                            .check_improper(&order_6, c3_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c3_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_s6 = 0;
            for (s6_axis, s6_axis_tr) in s6_axes {
                count_s6 += i32::from(self.add_improper(
                    order_6,
                    &s6_axis,
                    false,
                    SIG,
                    None,
                    presym.recentred_molecule.threshold,
                    s6_axis_tr,
                ));
            }
            ensure!(count_s6 == 10, "Unexpected number of S6 axes: {count_s6}.");

            // Locating σ
            let sigma_normals: Vec<(Vector3<f64>, bool)> = {
                self.get_proper(&ORDER_2)
                    .ok_or_else(|| format_err!("Expected C2 elements not found."))?
                    .iter()
                    .filter_map(|c2_ele| {
                        presym
                            .check_improper(&ORDER_1, c2_ele.raw_axis(), &SIG, tr)
                            .map(|improper_kind| {
                                (*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
                            })
                    })
                    .collect()
            };
            let mut count_sigma = 0;
            for (sigma_normal, sigma_normal_tr) in sigma_normals {
                count_sigma += i32::from(self.add_improper(
                    ORDER_1,
                    &sigma_normal,
                    false,
                    SIG,
                    None,
                    presym.recentred_molecule.threshold,
                    sigma_normal_tr,
                ));
            }
            ensure!(
                count_sigma == 15,
                "Unexpected number of σ mirror planes: {count_sigma}."
            );
        } // end locating improper axes for Ih

        Ok(())
    }
}