1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
//! Molecular symmetry element detection for spherical tops.
use std::collections::HashSet;
use anyhow::{self, ensure, format_err};
use itertools::{self, Itertools};
use log;
use nalgebra::Vector3;
use crate::auxiliary::geometry;
use crate::rotsym::RotationalSymmetry;
use crate::symmetry::symmetry_element::SIG;
use crate::symmetry::symmetry_element_order::{ElementOrder, ORDER_1, ORDER_2};
use super::{PreSymmetry, Symmetry};
impl Symmetry {
/// Locates and adds all possible and distinct $`C_2`$ axes present in the
/// molecule in `presym`, provided that `presym` is a spherical top.
///
/// # Arguments
///
/// * `presym` - A pre-symmetry-analysis structure containing information about the molecular
/// system.
/// * `tr` - A flag indicating if time reversal should also be considered. A time-reversed
/// symmetry element will only be considered if its non-time-reversed version turns out to be
/// not a symmetry element.
///
/// # Returns
///
/// The number of distinct $`C_2`$ axes located.
fn search_c2_spherical(
&mut self,
presym: &PreSymmetry,
tr: bool,
) -> Result<u32, anyhow::Error> {
ensure!(
matches!(presym.rotational_symmetry, RotationalSymmetry::Spherical),
"Unexpected rotational symmetry -- expected: {}, actual: {}",
RotationalSymmetry::Spherical,
presym.rotational_symmetry
);
let start_guard: u32 = 30;
let stable_c2_ratio: f64 = 0.5;
let c2_termination_counts = HashSet::from([3, 9, 15]);
let mut count_c2: u32 = 0;
let mut count_c2_stable: u32 = 0;
let mut n_pairs: u32 = 0;
let sea_groups = &presym.sea_groups;
for sea_group in sea_groups.iter() {
if sea_group.len() < 2 {
continue;
}
for atom2s in sea_group.iter().combinations(2) {
n_pairs += 1;
let atom_i_pos = atom2s[0].coordinates;
let atom_j_pos = atom2s[1].coordinates;
// Case B: C2 might cross through any two atoms
if let Some(proper_kind) = presym.check_proper(&ORDER_2, &atom_i_pos.coords, tr) {
if self.add_proper(
ORDER_2,
&atom_i_pos.coords,
false,
presym.recentred_molecule.threshold,
proper_kind.contains_time_reversal(),
) {
count_c2 += 1;
count_c2_stable = 0;
}
}
// Case A: C2 might cross through the midpoint of two atoms
let midvec = 0.5 * (atom_i_pos.coords + atom_j_pos.coords);
if let Some(proper_kind) = presym.check_proper(&ORDER_2, &midvec, tr) {
if midvec.norm() > presym.recentred_molecule.threshold
&& self.add_proper(
ORDER_2,
&midvec,
false,
presym.recentred_molecule.threshold,
proper_kind.contains_time_reversal(),
)
{
count_c2 += 1;
count_c2_stable = 0;
}
}
// Check if count_c2 has reached stability.
if (f64::from(count_c2_stable)) / (f64::from(n_pairs)) > stable_c2_ratio
&& n_pairs > start_guard
&& c2_termination_counts.contains(&count_c2)
{
break;
}
count_c2_stable += 1;
}
if c2_termination_counts.contains(&count_c2) {
break;
}
}
Ok(count_c2)
}
/// Performs point-group detection analysis for a spherical top.
///
/// # Arguments
///
/// * `presym` - A pre-symmetry-analysis structure containing information about the molecular
/// system.
/// * `tr` - A flag indicating if time reversal should also be considered. A time-reversed
/// symmetry element will only be considered if its non-time-reversed version turns out to be
/// not a symmetry element.
#[allow(clippy::too_many_lines)]
pub(super) fn analyse_spherical(
&mut self,
presym: &PreSymmetry,
tr: bool,
) -> Result<(), anyhow::Error> {
ensure!(
matches!(presym.rotational_symmetry, RotationalSymmetry::Spherical),
"Unexpected rotational symmetry -- expected: {}, actual: {}",
RotationalSymmetry::Spherical,
presym.rotational_symmetry
);
if presym.recentred_molecule.atoms.len() == 1 {
self.set_group_name("O(3)".to_owned());
self.add_proper(
ElementOrder::Inf,
&Vector3::z(),
true,
presym.recentred_molecule.threshold,
false,
);
self.add_proper(
ElementOrder::Inf,
&Vector3::y(),
true,
presym.recentred_molecule.threshold,
false,
);
self.add_proper(
ElementOrder::Inf,
&Vector3::x(),
true,
presym.recentred_molecule.threshold,
false,
);
self.add_improper(
ElementOrder::Int(2),
&Vector3::z(),
true,
SIG,
None,
presym.recentred_molecule.threshold,
false,
);
return Ok(());
}
// Locating all possible and distinct C2 axes
let count_c2 = self.search_c2_spherical(presym, tr)?;
log::debug!("Located {} C2 axes.", count_c2);
ensure!(
HashSet::from([3, 9, 15]).contains(&count_c2),
"Unexpected number of C2 axes -- expected: 3 or 9 or 15, actual: {count_c2}"
);
// Locating improper elements
match count_c2 {
3 => {
// Tetrahedral, so either T, Td, or Th
log::debug!("Tetrahedral family.");
if let Some(improper_kind) =
presym.check_improper(&ORDER_2, &Vector3::z(), &SIG, tr)
{
// Inversion centre
log::debug!("Located an inversion centre.");
self.set_group_name("Th".to_owned());
ensure!(
self.add_improper(
ORDER_2,
&Vector3::z(),
false,
SIG,
None,
presym.recentred_molecule.threshold,
improper_kind.contains_time_reversal()
),
"Expected improper element not added."
);
ensure!(
self.add_improper(
ORDER_2,
&Vector3::z(),
true,
SIG,
None,
presym.recentred_molecule.threshold,
improper_kind.contains_time_reversal()
),
"Expected improper generator not added."
);
} else {
let mut c2s = self
.get_proper(&ORDER_2)
.ok_or_else(|| format_err!("No C2 elements found."))?
.into_iter()
.take(2)
.cloned()
.collect_vec()
.into_iter();
let normal = c2s
.next()
.ok_or_else(|| format_err!("No C2 elements found."))?
.raw_axis()
+ c2s
.next()
.ok_or_else(|| {
format_err!("Two C2 elements expected, but only one found.")
})?
.raw_axis();
if presym.check_improper(&ORDER_1, &normal, &SIG, tr).is_some() {
// σd
log::debug!("Located σd.");
self.set_group_name("Td".to_owned());
let sigmad_normals = {
let mut axes = vec![];
for c2s in self
.get_proper(&ORDER_2)
.ok_or_else(|| format_err!("No C2 elements found."))?
.iter()
.combinations(2)
{
let axis_p = c2s[0].raw_axis() + c2s[1].raw_axis();
let p_improper_check =
presym.check_improper(&ORDER_1, &axis_p, &SIG, tr);
ensure!(
p_improper_check.is_some(),
"Expected mirror plane perpendicular to {axis_p} not found."
);
axes.push((
axis_p,
p_improper_check
.ok_or_else(|| format_err!("Expected mirror plane perpendicular to {axis_p} not found."))?
.contains_time_reversal(),
));
let axis_m = c2s[0].raw_axis() - c2s[1].raw_axis();
let m_improper_check =
presym.check_improper(&ORDER_1, &axis_m, &SIG, tr);
ensure!(
m_improper_check.is_some(),
"Expected mirror plane perpendicular to {axis_m} not found."
);
axes.push((
axis_m,
m_improper_check
.ok_or_else(|| format_err!("Expected mirror plane perpendicular to {axis_m} not found."))?
.contains_time_reversal(),
));
}
axes
};
let sigmad_generator_normal = sigmad_normals[0];
for (axis, axis_tr) in sigmad_normals {
ensure!(
self.add_improper(
ORDER_1,
&axis,
false,
SIG,
Some("d".to_owned()),
presym.recentred_molecule.threshold,
axis_tr
),
"Expected improper element not added."
);
}
ensure!(
self.add_improper(
ORDER_1,
&sigmad_generator_normal.0,
true,
SIG,
Some("d".to_owned()),
presym.recentred_molecule.threshold,
sigmad_generator_normal.1
),
"Expected improper generator not added."
);
} else {
// No σd => chiral
self.set_group_name("T".to_owned());
}
}
} // end count_c2 = 3
9 => {
// 6 C2 and 3 C4^2; Octahedral, so either O or Oh
log::debug!("Octahedral family.");
if let Some(improper_kind) =
presym.check_improper(&ORDER_2, &Vector3::z(), &SIG, tr)
{
// Inversion centre
log::debug!("Located an inversion centre.");
self.set_group_name("Oh".to_owned());
ensure!(
self.add_improper(
ORDER_2,
&Vector3::z(),
false,
SIG,
None,
presym.recentred_molecule.threshold,
improper_kind.contains_time_reversal()
),
"Expected improper element not added."
);
ensure!(
self.add_improper(
ORDER_2,
&Vector3::z(),
true,
SIG,
None,
presym.recentred_molecule.threshold,
improper_kind.contains_time_reversal()
),
"Expected improper generator not added."
);
} else {
// No inversion centre => chiral
self.set_group_name("O".to_owned());
}
} // end count_c2 = 9
15 => {
// Icosahedral, so either I or Ih
log::debug!("Icosahedral family.");
if let Some(improper_kind) =
presym.check_improper(&ORDER_2, &Vector3::z(), &SIG, tr)
{
// Inversion centre
log::debug!("Located an inversion centre.");
self.set_group_name("Ih".to_owned());
ensure!(
self.add_improper(
ORDER_2,
&Vector3::z(),
false,
SIG,
None,
presym.recentred_molecule.threshold,
improper_kind.contains_time_reversal()
),
"Expected improper element not added."
);
ensure!(
self.add_improper(
ORDER_2,
&Vector3::z(),
true,
SIG,
None,
presym.recentred_molecule.threshold,
improper_kind.contains_time_reversal()
),
"Expected improper generator not added."
);
} else {
// No inversion centre => chiral
self.set_group_name("I".to_owned());
}
} // end count_c2 = 15
_ => return Err(format_err!("Invalid number of C2 axes.")),
} // end match count_c2
// Locating all possible and distinct C3 axes
let mut count_c3 = 0;
let mut found_consistent_c3 = false;
let sea_groups = &presym.sea_groups;
let order_3 = ElementOrder::Int(3);
for sea_group in sea_groups.iter() {
if sea_group.len() < 3 {
continue;
}
if found_consistent_c3 {
break;
};
for atom3s in sea_group.iter().combinations(3) {
let atom_i = atom3s[0];
let atom_j = atom3s[1];
let atom_k = atom3s[2];
if !geometry::check_regular_polygon(&[atom_i, atom_j, atom_k]) {
continue;
}
let vec_ij = atom_j.coordinates - atom_i.coordinates;
let vec_ik = atom_k.coordinates - atom_i.coordinates;
let vec_normal = vec_ij.cross(&vec_ik);
ensure!(
vec_normal.norm() > presym.recentred_molecule.threshold,
"Unexpected zero-norm vector."
);
if let Some(proper_kind) = presym.check_proper(&order_3, &vec_normal, tr) {
count_c3 += i32::from(self.add_proper(
order_3,
&vec_normal,
false,
presym.recentred_molecule.threshold,
proper_kind.contains_time_reversal(),
));
}
if count_c2 == 3 && count_c3 == 4 {
// Tetrahedral, 4 C3 axes
found_consistent_c3 = true;
break;
}
if count_c2 == 9 && count_c3 == 4 {
// Octahedral, 4 C3 axes
found_consistent_c3 = true;
break;
}
if count_c2 == 15 && count_c3 == 10 {
// Icosahedral, 10 C3 axes
found_consistent_c3 = true;
break;
}
}
}
ensure!(
found_consistent_c3,
"Unexpected number of C3 axes: {count_c3}."
);
if count_c3 == 4 {
// Tetrahedral or octahedral, C3 axes are also generators.
let c3s = self
.get_proper(&order_3)
.ok_or_else(|| format_err!(" No C3 elements found."))?
.into_iter()
.cloned()
.collect_vec();
for c3 in &c3s {
self.add_proper(
order_3,
c3.raw_axis(),
true,
presym.recentred_molecule.threshold,
c3.contains_time_reversal(),
);
}
}
// Locating all possible and distinct C4 axes for O and Oh point groups
if count_c2 == 9 {
let mut count_c4 = 0;
let mut found_consistent_c4 = false;
let sea_groups = &presym.sea_groups;
let order_4 = ElementOrder::Int(4);
for sea_group in sea_groups.iter() {
if sea_group.len() < 4 {
continue;
}
if found_consistent_c4 {
break;
};
for atom4s in sea_group.iter().combinations(4) {
let atom_i = atom4s[0];
let atom_j = atom4s[1];
let atom_k = atom4s[2];
let atom_l = atom4s[3];
if !geometry::check_regular_polygon(&[atom_i, atom_j, atom_k, atom_l]) {
continue;
}
let vec_ij = atom_j.coordinates - atom_i.coordinates;
let vec_ik = atom_k.coordinates - atom_i.coordinates;
let vec_normal = vec_ij.cross(&vec_ik);
ensure!(
vec_normal.norm() > presym.recentred_molecule.threshold,
"Unexpected zero-norm vector."
);
if let Some(proper_kind) = presym.check_proper(&order_4, &vec_normal, tr) {
count_c4 += i32::from(self.add_proper(
order_4,
&vec_normal,
false,
presym.recentred_molecule.threshold,
proper_kind.contains_time_reversal(),
));
}
if count_c4 == 3 {
found_consistent_c4 = true;
break;
}
}
}
ensure!(
found_consistent_c4,
"Unexpected number of C4 axes: {count_c4}."
);
// Add a C4 as a generator
let c4 = *self
.get_proper(&order_4)
.ok_or_else(|| format_err!(" No C4 elements found."))?
.iter()
.next()
.ok_or_else(|| format_err!("Expected C4 not found."))?;
let c4_axis = *c4.raw_axis();
self.add_proper(
order_4,
&c4_axis,
true,
presym.recentred_molecule.threshold,
c4.contains_time_reversal(),
);
} // end locating C4 axes for O and Oh
// Locating all possible and distinct C5 axes for I and Ih point groups
if count_c2 == 15 {
let mut count_c5 = 0;
let mut found_consistent_c5 = false;
let sea_groups = &presym.sea_groups;
let order_5 = ElementOrder::Int(5);
for sea_group in sea_groups.iter() {
if sea_group.len() < 5 {
continue;
}
if found_consistent_c5 {
break;
};
for atom5s in sea_group.iter().combinations(5) {
let atom_i = atom5s[0];
let atom_j = atom5s[1];
let atom_k = atom5s[2];
let atom_l = atom5s[3];
let atom_m = atom5s[4];
if !geometry::check_regular_polygon(&[atom_i, atom_j, atom_k, atom_l, atom_m]) {
continue;
}
let vec_ij = atom_j.coordinates - atom_i.coordinates;
let vec_ik = atom_k.coordinates - atom_i.coordinates;
let vec_normal = vec_ij.cross(&vec_ik);
ensure!(
vec_normal.norm() > presym.recentred_molecule.threshold,
"Unexpected zero-norm vector."
);
if let Some(proper_kind) = presym.check_proper(&order_5, &vec_normal, tr) {
count_c5 += i32::from(self.add_proper(
order_5,
&vec_normal,
false,
presym.recentred_molecule.threshold,
proper_kind.contains_time_reversal(),
));
self.add_proper(
order_5,
&vec_normal,
true,
presym.recentred_molecule.threshold,
proper_kind.contains_time_reversal(),
);
}
if count_c5 == 6 {
found_consistent_c5 = true;
break;
}
}
}
ensure!(
found_consistent_c5,
"Unexpected number of C5 axes: {count_c5}."
);
} // end locating C5 axes for I and Ih
// Locating any other improper rotation axes for the non-chinal groups
if *self
.group_name
.as_ref()
.ok_or_else(|| format_err!("No point groups found."))?
== "Td"
{
// Locating S4
let order_4 = ElementOrder::Int(4);
let improper_s4_axes: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&ORDER_2)
.ok_or_else(|| format_err!("Expected C2 elements not found."))?
.iter()
.filter_map(|c2_ele| {
presym
.check_improper(&order_4, c2_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_s4 = 0;
for (s4_axis, s4_axis_tr) in improper_s4_axes {
count_s4 += i32::from(self.add_improper(
order_4,
&s4_axis,
false,
SIG,
None,
presym.recentred_molecule.threshold,
s4_axis_tr,
));
}
ensure!(count_s4 == 3, "Unexpected number of S4 axes: {count_s4}.");
}
// end locating improper axes for Td
else if *self
.group_name
.as_ref()
.ok_or_else(|| format_err!("No point groups found."))?
== "Th"
{
// Locating σh
let sigmah_normals: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&ORDER_2)
.ok_or_else(|| format_err!("Expected C2 elements not found."))?
.iter()
.filter_map(|c2_ele| {
presym
.check_improper(&ORDER_1, c2_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_sigmah = 0;
for (sigmah_normal, sigmah_normal_tr) in sigmah_normals {
count_sigmah += i32::from(self.add_improper(
ORDER_1,
&sigmah_normal,
false,
SIG,
Some("h".to_owned()),
presym.recentred_molecule.threshold,
sigmah_normal_tr,
));
}
ensure!(
count_sigmah == 3,
"Unexpected number of σh mirror planes: {count_sigmah}."
);
// Locating S6
let order_6 = ElementOrder::Int(6);
let s6_axes: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&order_3)
.ok_or_else(|| format_err!("Expected C3 elements not found."))?
.iter()
.filter_map(|c3_ele| {
presym
.check_improper(&order_6, c3_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c3_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_s6 = 0;
for (s6_axis, s6_axis_tr) in s6_axes {
count_s6 += i32::from(self.add_improper(
order_6,
&s6_axis,
false,
SIG,
None,
presym.recentred_molecule.threshold,
s6_axis_tr,
));
}
ensure!(count_s6 == 4, "Unexpected number of S6 axes: {count_s6}.");
}
// end locating improper axes for Th
else if *self
.group_name
.as_ref()
.ok_or_else(|| format_err!("No point groups found."))?
== "Oh"
{
// Locating S4
let order_4 = ElementOrder::Int(4);
let s4_axes: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&ORDER_2)
.ok_or_else(|| format_err!("Expected C2 elements not found."))?
.iter()
.filter_map(|c2_ele| {
presym
.check_improper(&order_4, c2_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_s4 = 0;
for (s4_axis, s4_axis_tr) in &s4_axes {
count_s4 += i32::from(self.add_improper(
order_4,
s4_axis,
false,
SIG,
None,
presym.recentred_molecule.threshold,
*s4_axis_tr,
));
}
ensure!(count_s4 == 3, "Unexpected number of S4 axes: {count_s4}.");
let sigmah_axes: Vec<(Vector3<f64>, bool)> = {
s4_axes
.iter()
.filter_map(|(sigmah_axis, _)| {
presym.check_improper(&ORDER_1, sigmah_axis, &SIG, tr).map(
|improper_kind| (*sigmah_axis, improper_kind.contains_time_reversal()),
)
})
.collect()
};
let mut count_sigmah = 0;
for (sigmah_axis, sigmah_axis_tr) in sigmah_axes {
count_sigmah += i32::from(self.add_improper(
ORDER_1,
&sigmah_axis,
false,
SIG,
Some("h".to_owned()),
presym.recentred_molecule.threshold,
sigmah_axis_tr,
));
}
ensure!(
count_sigmah == 3,
"Unexpected number of σh mirror planes: {count_sigmah}."
);
// Locating σd
let sigmad_normals: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&ORDER_2)
.ok_or_else(|| format_err!("Expected C2 elements not found."))?
.iter()
.filter_map(|c2_ele| {
if presym
.check_improper(&order_4, c2_ele.raw_axis(), &SIG, tr)
.is_none()
{
presym
.check_improper(&ORDER_1, c2_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
})
} else {
None
}
})
.collect()
};
let mut count_sigmad = 0;
for (sigmad_normal, sigmad_normal_tr) in sigmad_normals {
count_sigmad += i32::from(self.add_improper(
ORDER_1,
&sigmad_normal,
false,
SIG,
Some("d".to_owned()),
presym.recentred_molecule.threshold,
sigmad_normal_tr,
));
}
ensure!(
count_sigmad == 6,
"Unexpected number of σd mirror planes: {count_sigmad}."
);
// Locating S6
let order_6 = ElementOrder::Int(6);
let s6_axes: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&order_3)
.ok_or_else(|| format_err!("Expected C3 elements not found."))?
.iter()
.filter_map(|c3_ele| {
presym
.check_improper(&order_6, c3_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c3_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_s6 = 0;
for (s6_axis, s6_axis_tr) in s6_axes {
count_s6 += i32::from(self.add_improper(
order_6,
&s6_axis,
false,
SIG,
None,
presym.recentred_molecule.threshold,
s6_axis_tr,
));
}
ensure!(count_s6 == 4, "Unexpected number of S6 axes: {count_s6}.");
}
// end locating improper axes for Oh
else if *self
.group_name
.as_ref()
.ok_or_else(|| format_err!("No point groups found."))?
== "Ih"
{
// Locating S10
let order_5 = ElementOrder::Int(5);
let order_10 = ElementOrder::Int(10);
let s10_axes: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&order_5)
.ok_or_else(|| format_err!("Expected C5 elements not found."))?
.iter()
.filter_map(|c5_ele| {
presym
.check_improper(&order_10, c5_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c5_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_s10 = 0;
for (s10_axis, s10_axis_tr) in s10_axes {
count_s10 += i32::from(self.add_improper(
order_10,
&s10_axis,
false,
SIG,
None,
presym.recentred_molecule.threshold,
s10_axis_tr,
));
}
ensure!(
count_s10 == 6,
"Unexpected number of S10 axes: {count_s10}."
);
// Locating S6
let order_6 = ElementOrder::Int(6);
let s6_axes: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&order_3)
.ok_or_else(|| format_err!("Expected C3 elements not found."))?
.iter()
.filter_map(|c3_ele| {
presym
.check_improper(&order_6, c3_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c3_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_s6 = 0;
for (s6_axis, s6_axis_tr) in s6_axes {
count_s6 += i32::from(self.add_improper(
order_6,
&s6_axis,
false,
SIG,
None,
presym.recentred_molecule.threshold,
s6_axis_tr,
));
}
ensure!(count_s6 == 10, "Unexpected number of S6 axes: {count_s6}.");
// Locating σ
let sigma_normals: Vec<(Vector3<f64>, bool)> = {
self.get_proper(&ORDER_2)
.ok_or_else(|| format_err!("Expected C2 elements not found."))?
.iter()
.filter_map(|c2_ele| {
presym
.check_improper(&ORDER_1, c2_ele.raw_axis(), &SIG, tr)
.map(|improper_kind| {
(*c2_ele.raw_axis(), improper_kind.contains_time_reversal())
})
})
.collect()
};
let mut count_sigma = 0;
for (sigma_normal, sigma_normal_tr) in sigma_normals {
count_sigma += i32::from(self.add_improper(
ORDER_1,
&sigma_normal,
false,
SIG,
None,
presym.recentred_molecule.threshold,
sigma_normal_tr,
));
}
ensure!(
count_sigma == 15,
"Unexpected number of σ mirror planes: {count_sigma}."
);
} // end locating improper axes for Ih
Ok(())
}
}