1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
//! Geometrical symmetry elements.
use std::convert::TryInto;
use std::fmt;
use std::hash::{Hash, Hasher};
use approx;
use derive_builder::Builder;
use fraction;
use log;
use nalgebra::Vector3;
use num::integer::gcd;
use num_traits::{ToPrimitive, Zero};
use serde::{Deserialize, Serialize};
use crate::auxiliary::geometry;
use crate::auxiliary::misc::{self, HashableFloat};
use crate::symmetry::symmetry_element_order::ElementOrder;
type F = fraction::GenericFraction<u32>;
pub mod symmetry_operation;
pub use symmetry_operation::*;
#[cfg(test)]
mod symmetry_element_tests;
// ====================================
// Enum definitions and implementations
// ====================================
/// Enumerated type to classify the type of the antiunitary term that contributes to a symmetry
/// element.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum AntiunitaryKind {
/// Variant for the antiunitary term being a complex-conjugation operation.
ComplexConjugation,
/// Variant for the antiunitary term being a time-reversal operation.
TimeReversal,
}
/// Enumerated type to classify the types of symmetry element.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum SymmetryElementKind {
/// Proper symmetry element which consists of just a proper rotation axis.
///
/// The associated option indicates the type of the associated antiunitary operation, if any.
Proper(Option<AntiunitaryKind>),
/// Improper symmetry element in the mirror-plane convention, which consists of a proper
/// rotation axis and an orthogonal mirror plane.
///
/// The associated option indicates the type of the associated antiunitary operation, if any.
ImproperMirrorPlane(Option<AntiunitaryKind>),
/// Improper symmetry element in the inversion-centre convention, which consists of a proper
/// rotation axis and an inversion centre.
///
/// The associated option indicates the type of the associated antiunitary operation, if any.
ImproperInversionCentre(Option<AntiunitaryKind>),
}
impl SymmetryElementKind {
/// Indicates if a time-reversal operation is associated with this element.
#[must_use]
pub fn contains_time_reversal(&self) -> bool {
match self {
Self::Proper(tr)
| Self::ImproperMirrorPlane(tr)
| Self::ImproperInversionCentre(tr) => *tr == Some(AntiunitaryKind::TimeReversal),
}
}
/// Indicates if an antiunitary operation is associated with this element.
#[must_use]
pub fn contains_antiunitary(&self) -> bool {
match self {
Self::Proper(au)
| Self::ImproperMirrorPlane(au)
| Self::ImproperInversionCentre(au) => au.is_some(),
}
}
/// Converts the current kind to the desired time-reversal form.
///
/// # Arguments
///
/// * `tr` - A boolean indicating whether time reversal is included (`true`) or removed
/// (`false`).
///
/// # Returns
///
/// A copy of the current kind with or without the time-reversal antiunitary operation.
#[must_use]
pub fn to_tr(&self, tr: bool) -> Self {
if tr {
self.to_antiunitary(Some(AntiunitaryKind::TimeReversal))
} else {
self.to_antiunitary(None)
}
}
/// Converts the associated antiunitary operation to the desired kind.
///
/// # Arguments
///
/// * `au` - An option containing the desired antiunitary kind.
///
/// # Returns
///
/// A new symmetry element kind with the desired antiunitary kind.
pub fn to_antiunitary(&self, au: Option<AntiunitaryKind>) -> Self {
match self {
Self::Proper(_) => Self::Proper(au),
Self::ImproperMirrorPlane(_) => Self::ImproperMirrorPlane(au),
Self::ImproperInversionCentre(_) => Self::ImproperInversionCentre(au),
}
}
}
/// Enumerated type to signify whether a spatial symmetry operation has an associated spin
/// rotation.
#[derive(Clone, Hash, PartialEq, Eq, Debug, Serialize, Deserialize)]
pub enum RotationGroup {
/// Variant indicating that the proper part of the symmetry element generates rotations in
/// $`\mathsf{SO}(3)`$.
SO3,
/// Variant indicating that the proper part of the symmetry element generates rotations in
/// $`\mathsf{SU}(2)`$. The associated boolean indicates whether the proper part of the element
/// itself is connected to the identity via a homotopy path of class 0 (`true`) or class 1
/// (`false`).
SU2(bool),
}
impl RotationGroup {
/// Indicates if the rotation is in $`\mathsf{SU}(2)`$.
pub fn is_su2(&self) -> bool {
matches!(self, RotationGroup::SU2(_))
}
/// Indicates if the rotation is in $`\mathsf{SU}(2)`$ and connected to the
/// identity via a homotopy path of class 1.
pub fn is_su2_class_1(&self) -> bool {
matches!(self, RotationGroup::SU2(false))
}
}
// ======================================
// Struct definitions and implementations
// ======================================
pub struct SymmetryElementKindConversionError(String);
impl fmt::Debug for SymmetryElementKindConversionError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SymmetryElementKindConversionError")
.field("Message", &self.0)
.finish()
}
}
impl fmt::Display for SymmetryElementKindConversionError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"SymmetryElementKindConversionError with message: {}",
&self.0
)
}
}
impl std::error::Error for SymmetryElementKindConversionError {}
impl TryInto<geometry::ImproperRotationKind> for SymmetryElementKind {
type Error = SymmetryElementKindConversionError;
fn try_into(self) -> Result<geometry::ImproperRotationKind, Self::Error> {
match self {
Self::Proper(_) => Err(SymmetryElementKindConversionError(
"Unable to convert a proper element to an `ImproperRotationKind`.".to_string(),
)),
Self::ImproperMirrorPlane(_) => Ok(geometry::ImproperRotationKind::MirrorPlane),
Self::ImproperInversionCentre(_) => Ok(geometry::ImproperRotationKind::InversionCentre),
}
}
}
impl fmt::Display for SymmetryElementKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Proper(au) => match au {
None => write!(f, "Proper"),
Some(AntiunitaryKind::TimeReversal) => write!(f, "Time-reversed proper"),
Some(AntiunitaryKind::ComplexConjugation) => write!(f, "Complex-conjugated proper"),
},
Self::ImproperMirrorPlane(au) => match au {
None => write!(f, "Improper (mirror-plane convention)"),
Some(AntiunitaryKind::TimeReversal) => {
write!(f, "Time-reversed improper (mirror-plane convention)")
}
Some(AntiunitaryKind::ComplexConjugation) => {
write!(f, "Complex-conjugated improper (mirror-plane convention)")
}
},
Self::ImproperInversionCentre(au) => match au {
None => write!(f, "Improper (inversion-centre convention)"),
Some(AntiunitaryKind::TimeReversal) => {
write!(f, "Time-reversed improper (inversion-centre convention)")
}
Some(AntiunitaryKind::ComplexConjugation) => {
write!(
f,
"Complex-conjugated improper (inversion-centre convention)"
)
}
},
}
}
}
/// Structure for storing and managing symmetry elements.
///
/// Each symmetry element is a geometrical object in $`\mathbb{R}^3`$ that encodes the following
/// pieces of information:
///
/// * the axis of rotation $`\hat{\mathbf{n}}`$,
/// * the angle of rotation $`\phi`$,
/// * the associated improper operation, if any, and
/// * the associated antiunitary operation, if any.
///
/// These pieces of information can be stored in the following representation of a symmetry element
/// $`\hat{g}`$:
///
/// ```math
/// \hat{g} = \hat{\alpha} \hat{\gamma} \hat{C}_n^k,
/// ```
///
/// where
/// * $`n \in \mathbb{N}_{+}`$, $`k \in \mathbb{Z}/n\mathbb{Z}`$ such that
/// $`\lfloor -n/2 \rfloor < k \le \lfloor n/2 \rfloor`$,
/// * $`\hat{\gamma}`$ is either the identity $`\hat{e}`$, the inversion operation $`\hat{i}`$, or
/// a reflection operation $`\hat{\sigma}`$ perpendicular to the axis of rotation,
/// * $`\hat{\alpha}`$ is either the identity $`\hat{e}`$, the complex conjugation $`\hat{K}`$, or
/// the time reversal $`\hat{\theta}`$.
///
/// With this definition, the above pieces of information required to specify a geometrical symmetry
/// element are given as follows:
///
/// * the axis of rotation $`\hat{\mathbf{n}}`$ is given by the axis of $`\hat{C}_n^k`$,
/// * the angle of rotation $`\phi = 2\pi k/n \in (-\pi, \pi]`$,
/// * the improper contribution $`\hat{\gamma}`$,
/// * the antiunitary contribution $`\hat{\alpha}`$.
///
/// This definition also allows the unitary part of $`\hat{g}`$ to be interpreted as an element of
/// either $`\mathsf{O}(3)`$ or $`\mathsf{SU}'(2)`$, which means that the unitary part of
/// $`\hat{g}`$ is also a symmetry operation in the corresponding group, and a rather special one
/// that can be used to generate other symmetry operations of the group. $`\hat{g}`$ thus serves as
/// a bridge between molecular symmetry and abstract group theory.
///
/// There is one small caveat: for infinite-order elements, $`n`$ and $`k`$ can no longer be used
/// to give the angle of rotation. There must thus be a mechanism to allow for infinite-order
/// elements to be interpreted as an arbitrary finite-order one. An explicit specification of the
/// angle of rotation $`\phi`$ seems to be the best way to do this. In other words, the angle of
/// rotation of each element is specified by either a tuple of integers $`(k, n)`$ or a
/// floating-point number $`\phi`$.
#[derive(Builder, Clone, Serialize, Deserialize)]
pub struct SymmetryElement {
/// The rotational order $`n`$ of the proper rotation part of the symmetry element. This can be
/// finite or infinite, and will determine whether the proper power is `None` or
/// contains an integer value.
#[builder(setter(name = "proper_order"))]
raw_proper_order: ElementOrder,
/// The power $`k \in \mathbb{Z}/n\mathbb{Z}`$ of the proper symmetry element such that
/// $`\lfloor -n/2 \rfloor < k <= \lfloor n/2 \rfloor`$. This is only defined if
/// the proper order is finite.
#[builder(setter(custom, name = "proper_power"), default = "None")]
raw_proper_power: Option<i32>,
/// The normalised axis of the symmetry element whose direction is as specified at construction.
#[builder(setter(custom))]
raw_axis: Vector3<f64>,
/// The spatial and antiunitary kind of the symmetry element.
#[builder(default = "SymmetryElementKind::Proper(None)")]
kind: SymmetryElementKind,
/// The rotation group in which the proper rotation part of the symmetry element shall be
/// interpreted.
rotation_group: RotationGroup,
/// A boolean indicating whether the symmetry element is a generator of the group to which it
/// belongs.
#[builder(default = "false")]
generator: bool,
/// A threshold for approximate equality comparisons.
#[builder(setter(custom))]
threshold: f64,
/// An additional superscript for distinguishing symmetry elements.
#[builder(default = "String::new()")]
pub(crate) additional_superscript: String,
/// An additional subscript for distinguishing symmetry elements.
#[builder(default = "String::new()")]
pub(crate) additional_subscript: String,
/// The fraction $`k/n \in (-1/2, 1/2]`$ of the proper rotation, represented exactly
/// for hashing and comparison purposes.
///
/// This is not defined for infinite-order elements and cannot be set arbitrarily.
#[builder(setter(skip), default = "self.calc_proper_fraction()")]
proper_fraction: Option<F>,
/// The normalised proper angle $`\phi \in (-\pi, \pi]`$ corresponding to the proper rotation.
///
/// This can be set arbitrarily only for infinite-order elements.
#[builder(setter(custom), default = "self.calc_proper_angle()")]
proper_angle: Option<f64>,
}
impl SymmetryElementBuilder {
/// Sets the proper power of the element.
///
/// # Arguments
///
/// * `prop_pow` - A proper power to be set. This will be folded into the interval
/// $`(\lfloor -n/2 \rfloor, \lfloor n/2 \rfloor]`$.
pub fn proper_power(&mut self, prop_pow: i32) -> &mut Self {
let raw_proper_order = self
.raw_proper_order
.as_ref()
.expect("Proper order has not been set.");
self.raw_proper_power = match raw_proper_order {
ElementOrder::Int(io) => {
let io_i32 =
i32::try_from(*io).expect("Unable to convert the integer order to `i32`.");
let residual = prop_pow.rem_euclid(io_i32);
if residual > io_i32.div_euclid(2) {
Some(Some(residual - io_i32))
} else {
Some(Some(residual))
}
}
ElementOrder::Inf => None,
};
self
}
/// Sets the proper rotation angle of the infinite-order element.
///
/// # Arguments
///
/// * `ang` - A proper rotation angle to be set. This will be folded into the interval
/// $`(-\pi, \pi]`$.
///
/// # Panics
///
/// Panics when `self` is of finite order.
pub fn proper_angle(&mut self, ang: f64) -> &mut Self {
let proper_order = self
.raw_proper_order
.as_ref()
.expect("Proper order has not been set.");
self.proper_angle = match proper_order {
ElementOrder::Int(_) => panic!(
"Arbitrary proper rotation angles can only be set for infinite-order elements."
),
ElementOrder::Inf => {
let (normalised_rotation_angle, _) = geometry::normalise_rotation_angle(
ang,
self.threshold.expect("Threshold value has not been set."),
);
Some(Some(normalised_rotation_angle))
}
};
self
}
/// Sets the raw axis of the element.
///
/// # Arguments
///
/// * `axs` - The raw axis which will be normalised.
pub fn raw_axis(&mut self, axs: Vector3<f64>) -> &mut Self {
let thresh = self.threshold.expect("Threshold value has not been set.");
if approx::abs_diff_eq!(axs.norm(), 1.0, epsilon = thresh) {
self.raw_axis = Some(axs);
} else {
log::warn!("Axis not normalised. Normalising...");
self.raw_axis = Some(axs.normalize());
}
self
}
/// Sets the comparison threshold of the element.
///
/// # Arguments
///
/// * `thresh` - The comparison threshold..
pub fn threshold(&mut self, thresh: f64) -> &mut Self {
if thresh >= 0.0 {
self.threshold = Some(thresh);
} else {
log::error!(
"Threshold value `{}` is invalid. Threshold must be non-negative.",
thresh
);
self.threshold = None;
}
self
}
fn calc_proper_fraction(&self) -> Option<F> {
let raw_proper_order = self
.raw_proper_order
.as_ref()
.expect("Proper order has not been set.");
match raw_proper_order {
ElementOrder::Int(io) => {
// The generating element has a proper fraction, pp/n.
//
// If pp/n > 1/2, we seek a positive integer x such that
// -1/2 < pp/n - x <= 1/2.
// It turns out that x ∈ [pp/n - 1/2, pp/n + 1/2).
//
// If pp/n <= -1/2, we seek a positive integer x such that
// -1/2 < pp/n + x <= 1/2.
// It turns out that x ∈ (-pp/n - 1/2, -pp/n + 1/2].
//
// x is then used to bring pp/n back into the (-1/2, 1/2] interval.
//
// See S.L. Altmann, Rotations, Quaternions, and Double Groups (Dover
// Publications, Inc., New York, 2005) for further information.
let pp = self
.raw_proper_power
.expect("Proper power has not been set.")
.expect("No proper powers found.");
let total_proper_fraction = if pp >= 0 {
F::new(pp.unsigned_abs(), *io)
} else {
F::new_neg(pp.unsigned_abs(), *io)
};
Some(total_proper_fraction)
}
ElementOrder::Inf => None,
}
}
fn calc_proper_angle(&self) -> Option<f64> {
let raw_proper_order = self
.raw_proper_order
.as_ref()
.expect("Proper order has not been set.");
match raw_proper_order {
ElementOrder::Int(io) => {
let pp = self
.raw_proper_power
.expect("Proper power has not been set.")
.expect("No proper powers found.");
let total_proper_fraction = if pp >= 0 {
F::new(pp.unsigned_abs(), *io)
} else {
F::new_neg(pp.unsigned_abs(), *io)
};
Some(
total_proper_fraction
.to_f64()
.expect("Unable to convert the proper fraction to `f64`.")
* 2.0
* std::f64::consts::PI,
)
}
ElementOrder::Inf => self.proper_angle.unwrap_or(None),
}
}
}
impl SymmetryElement {
/// Returns a builder to construct a new symmetry element.
///
/// # Returns
///
/// A builder to construct a new symmetry element.
#[must_use]
pub fn builder() -> SymmetryElementBuilder {
SymmetryElementBuilder::default()
}
/// Returns the raw order of the proper rotation. This might not be equal to the value of $`n`$
/// if the fraction $`k/n`$ has been reduced.
pub fn raw_proper_order(&self) -> &ElementOrder {
&self.raw_proper_order
}
/// Returns the raw power of the proper rotation. This might not be equal to the value of $`k`$
/// if the fraction $`k/n`$ has been reduced.
pub fn raw_proper_power(&self) -> Option<&i32> {
self.raw_proper_power.as_ref()
}
/// Returns the raw axis of the proper rotation.
pub fn raw_axis(&self) -> &Vector3<f64> {
&self.raw_axis
}
/// Returns the axis of the proper rotation in the standard positive hemisphere.
pub fn standard_positive_axis(&self) -> Vector3<f64> {
geometry::get_standard_positive_pole(&self.raw_axis, self.threshold)
}
/// Returns the axis of the proper rotation multiplied by the sign of the rotation angle. If
/// the proper rotation is a binary rotation, then the positive axis is always returned.
pub fn signed_axis(&self) -> Vector3<f64> {
let au = self.contains_antiunitary();
if self.is_o3_binary_rotation_axis(au) || self.is_o3_mirror_plane(au) {
self.standard_positive_axis()
} else {
self.proper_fraction
.map(|frac| {
frac.signum()
.to_f64()
.expect("Unable to obtain the sign of the proper fraction.")
})
.or_else(|| self.proper_angle.map(|proper_angle| proper_angle.signum())).map(|signum| signum * self.raw_axis)
.unwrap_or_else(|| {
log::warn!("No rotation signs could be obtained. The positive axis will be used for the signed axis.");
self.standard_positive_axis()
})
}
}
/// Returns the pole of the proper rotation part of the element while leaving any improper and
/// antiunitary contributions intact.
///
/// If the proper rotation part if a binary rotation, the pole is always in the standard
/// positive hemisphere.
///
/// # Returns
///
/// The position vector of the proper rotation pole.
pub fn proper_rotation_pole(&self) -> Vector3<f64> {
match *self.raw_proper_order() {
ElementOrder::Int(_) => {
let frac_1_2 = F::new(1u32, 2u32);
let proper_fraction = self.proper_fraction.expect("No proper fractions found.");
if proper_fraction == frac_1_2 {
// Binary proper rotations
geometry::get_standard_positive_pole(&self.raw_axis, self.threshold)
} else if proper_fraction > F::zero() {
// Positive proper rotation angles
self.raw_axis
} else if proper_fraction < F::zero() {
// Negative proper rotation angles
-self.raw_axis
} else {
// Identity or inversion
assert!(proper_fraction.is_zero());
Vector3::zeros()
}
}
ElementOrder::Inf => {
if approx::abs_diff_eq!(
self.proper_angle.expect("No proper angles found."),
std::f64::consts::PI,
epsilon = self.threshold
) {
// Binary proper rotations
geometry::get_standard_positive_pole(&self.raw_axis, self.threshold)
} else if approx::abs_diff_ne!(
self.proper_angle.expect("No proper angles found."),
0.0,
epsilon = self.threshold
) {
self.proper_angle.expect("No proper angles found.").signum() * self.raw_axis
} else {
approx::assert_abs_diff_eq!(
self.proper_angle.expect("No proper angles found."),
0.0,
epsilon = self.threshold
);
Vector3::zeros()
}
}
}
}
/// Returns the proper fraction for this element, if any.
///
/// The element lacks a proper fraction if it is infinite-order.
pub fn proper_fraction(&self) -> Option<&F> {
self.proper_fraction.as_ref()
}
/// Returns the proper angle for this element, if any.
///
/// The element lacks a proper angle if it is infinite-order and the rotation angle has not
/// been set.
pub fn proper_angle(&self) -> Option<f64> {
self.proper_angle
}
/// Returns the spatial and antiunitary kind of this element.
pub fn kind(&self) -> &SymmetryElementKind {
&self.kind
}
/// Returns the rotation group and possibly the identity-connected homotopy class in which the
/// proper rotation part of this element is to be interpreted.
pub fn rotation_group(&self) -> &RotationGroup {
&self.rotation_group
}
/// Returns a boolean indicating if the element is a generator of a group.
pub fn is_generator(&self) -> bool {
self.generator
}
/// Returns the threshold for approximate comparisons.
pub fn threshold(&self) -> f64 {
self.threshold
}
/// Checks if the symmetry element contains a time-reversal operator as the antiunitary part.
///
/// # Returns
///
/// A boolean indicating if the symmetry element contains a time-reversal operator as the
/// antiunitary part.
#[must_use]
pub fn contains_time_reversal(&self) -> bool {
self.kind.contains_time_reversal()
}
/// Checks if the symmetry element contains an antiunitary part.
///
/// # Returns
///
/// Returns `None` if the symmetry element has no antiunitary parts, or `Some` wrapping around
/// the antiunitary kind if the symmetry element contains an antiunitary part.
pub fn contains_antiunitary(&self) -> Option<AntiunitaryKind> {
match self.kind {
SymmetryElementKind::Proper(au)
| SymmetryElementKind::ImproperMirrorPlane(au)
| SymmetryElementKind::ImproperInversionCentre(au) => au,
}
}
/// Checks if the proper rotation part of the element is in $`\mathsf{SU}(2)`$.
#[must_use]
pub fn is_su2(&self) -> bool {
self.rotation_group.is_su2()
}
/// Checks if the proper rotation part of the element is in $`\mathsf{SU}(2)`$ and connected to
/// the identity via a homotopy path of class 1.
///
/// See S.L. Altmann, Rotations, Quaternions, and Double Groups (Dover Publications, Inc., New
/// York, 2005) for further information.
#[must_use]
pub fn is_su2_class_1(&self) -> bool {
self.rotation_group.is_su2_class_1()
}
/// Checks if the spatial part of the symmetry element is proper and has the specified
/// antiunitary attribute.
///
/// # Arguments
///
/// * `au` - An `Option` for the desired antiunitary kind.
///
/// # Returns
///
/// A boolean indicating if the symmetry element is proper and has the specified antiunitary
/// attribute.
#[must_use]
pub fn is_o3_proper(&self, au: Option<AntiunitaryKind>) -> bool {
self.kind == SymmetryElementKind::Proper(au)
}
/// Checks if the symmetry element is spatially an identity element and has the specified
/// antiunitary attribute.
///
/// # Arguments
///
/// * `au` - An `Option` for the desired antiunitary kind.
///
/// # Returns
///
/// A boolean indicating if this symmetry element is spatially an identity element and has the
/// specified antiunitary attribute.
#[must_use]
pub fn is_o3_identity(&self, au: Option<AntiunitaryKind>) -> bool {
self.kind == SymmetryElementKind::Proper(au)
&& self
.proper_fraction
.map(|frac| frac.is_zero())
.or_else(|| {
self.proper_angle.map(|proper_angle| {
approx::abs_diff_eq!(
proper_angle,
0.0,
epsilon = self.threshold,
)
})
})
.unwrap_or(false)
}
/// Checks if the symmetry element is spatially an inversion centre and has the specified
/// antiunitary attribute.
///
/// # Arguments
///
/// * `au` - An `Option` for the desired antiunitary kind.
///
/// # Returns
///
/// A boolean indicating if this symmetry element is an inversion centre and has the specified
/// antiunitary attribute.
#[must_use]
pub fn is_o3_inversion_centre(&self, au: Option<AntiunitaryKind>) -> bool {
match self.kind {
SymmetryElementKind::ImproperMirrorPlane(sig_au) => {
sig_au == au
&& self
.proper_fraction
.map(|frac| frac == F::new(1u32, 2u32))
.or_else(|| {
self.proper_angle.map(|proper_angle| {
approx::abs_diff_eq!(
proper_angle,
std::f64::consts::PI,
epsilon = self.threshold,
)
})
})
.unwrap_or(false)
}
SymmetryElementKind::ImproperInversionCentre(inv_au) => {
inv_au == au
&& self
.proper_fraction
.map(|frac| frac.is_zero())
.or_else(|| {
self.proper_angle.map(|proper_angle| {
approx::abs_diff_eq!(
proper_angle,
0.0,
epsilon = self.threshold,
)
})
})
.unwrap_or(false)
}
_ => false,
}
}
/// Checks if the symmetry element is spatially a binary rotation axis and has the specified
/// antiunitary attribute.
///
/// # Arguments
///
/// * `au` - An `Option` for the desired antiunitary kind.
///
/// # Returns
///
/// A boolean indicating if this symmetry element is spatially a binary rotation axis and has
/// the specified antiunitary attribute.
#[must_use]
pub fn is_o3_binary_rotation_axis(&self, au: Option<AntiunitaryKind>) -> bool {
self.kind == SymmetryElementKind::Proper(au)
&& self
.proper_fraction
.map(|frac| frac == F::new(1u32, 2u32))
.or_else(|| {
self.proper_angle.map(|proper_angle| {
approx::abs_diff_eq!(
proper_angle,
std::f64::consts::PI,
epsilon = self.threshold,
)
})
})
.unwrap_or(false)
}
/// Checks if the symmetry element is spatially a mirror plane and has the specified
/// antiunitary attribute.
///
/// # Arguments
///
/// * `au` - An `Option` for the desired antiunitary kind.
///
/// # Returns
///
/// A boolean indicating if this symmetry element is spatially a mirror plane and has the
/// specified antiunitary attribute.
#[must_use]
pub fn is_o3_mirror_plane(&self, au: Option<AntiunitaryKind>) -> bool {
match self.kind {
SymmetryElementKind::ImproperMirrorPlane(sig_au) => {
sig_au == au
&& self
.proper_fraction
.map(|frac| frac.is_zero())
.or_else(|| {
self.proper_angle.map(|proper_angle| {
approx::abs_diff_eq!(
proper_angle,
0.0,
epsilon = self.threshold,
)
})
})
.unwrap_or(false)
}
SymmetryElementKind::ImproperInversionCentre(inv_au) => {
inv_au == au
&& self
.proper_fraction
.map(|frac| frac == F::new(1u32, 2u32))
.or_else(|| {
self.proper_angle.map(|proper_angle| {
approx::abs_diff_eq!(
proper_angle,
std::f64::consts::PI,
epsilon = self.threshold,
)
})
})
.unwrap_or(false)
}
_ => false,
}
}
/// Returns the full symbol for this symmetry element, which does not classify certain
/// improper rotation axes into inversion centres or mirror planes, but which does simplify
/// the power/order ratio, and which displays only the absolute value of the power since
/// symmetry elements do not distinguish senses of rotations since rotations of oposite
/// directions are inverses of each other, both of which must exist in the group.
///
/// Some additional symbols that can be unconventional include:
///
/// * `θ`: time reversal,
/// * `(Σ)`: the spatial part is in homotopy class 0 of $`\mathsf{SU}'(2)`$,
/// * `(QΣ)`: the spatial part is in homotopy class 1 of $`\mathsf{SU}'(2)`$.
///
/// See [`RotationGroup`] for further information.
///
/// # Returns
///
/// The full symbol for this symmetry element.
#[must_use]
pub fn get_full_symbol(&self) -> String {
let tr_sym = if self.kind.contains_time_reversal() {
"θ·"
} else {
""
};
let main_symbol: String = match self.kind {
SymmetryElementKind::Proper(_) => {
format!("{tr_sym}C")
}
SymmetryElementKind::ImproperMirrorPlane(_) => {
if *self.raw_proper_order() != ElementOrder::Inf
&& (*self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.numer()
.expect("Unable to extract the numerator of the proper fraction.")
== 1
|| self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.is_zero())
{
format!("{tr_sym}S")
} else {
format!("{tr_sym}σC")
}
}
SymmetryElementKind::ImproperInversionCentre(_) => {
if *self.raw_proper_order() != ElementOrder::Inf
&& (*self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.numer()
.expect("Unable to extract the numerator of the proper fraction.")
== 1
|| self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.is_zero())
{
format!("{tr_sym}Ṡ")
} else {
format!("{tr_sym}iC")
}
}
};
let su2_sym = if self.is_su2_class_1() {
"(QΣ)"
} else if self.is_su2() {
"(Σ)"
} else {
""
};
if let Some(proper_fraction) = self.proper_fraction {
if proper_fraction.is_zero() {
format!("{main_symbol}1{su2_sym}")
} else {
let proper_order = proper_fraction
.denom()
.expect("Unable to extract the denominator of the proper fraction.")
.to_string();
let proper_power = {
let pow = *proper_fraction
.numer()
.expect("Unable to extract the numerator of the proper fraction.");
if pow > 1 {
format!("^{pow}")
} else {
String::new()
}
};
format!("{main_symbol}{proper_order}{proper_power}{su2_sym}")
}
} else {
assert_eq!(*self.raw_proper_order(), ElementOrder::Inf);
let proper_angle = if let Some(proper_angle) = self.proper_angle {
format!("({:+.3})", proper_angle.abs())
} else {
String::new()
};
format!(
"{main_symbol}{}{proper_angle}{su2_sym}",
self.raw_proper_order()
)
}
}
/// Returns the simplified symbol for this symmetry element, which classifies special symmetry
/// elements (identity, inversion centre, time reversal, mirror planes), and which simplifies
/// the power/order ratio and displays only the absolute value of the power since symmetry
/// elements do not distinguish senses of rotations, as rotations of oposite directions are
/// inverses of each other, both of which must exist in the group.
///
/// # Returns
///
/// The simplified symbol for this symmetry element.
#[must_use]
pub fn get_simplified_symbol(&self) -> String {
let (main_symbol, needs_power) = match self.kind {
SymmetryElementKind::Proper(au) => {
if self.is_o3_identity(au) {
match au {
None => ("E".to_owned(), false),
Some(AntiunitaryKind::TimeReversal) => ("θ".to_owned(), false),
Some(AntiunitaryKind::ComplexConjugation) => ("K".to_owned(), false),
}
} else {
let au_sym = match au {
None => "",
Some(AntiunitaryKind::TimeReversal) => "θ·",
Some(AntiunitaryKind::ComplexConjugation) => "K·",
};
(format!("{au_sym}C"), true)
}
}
SymmetryElementKind::ImproperMirrorPlane(au) => {
let au_sym = match au {
None => "",
Some(AntiunitaryKind::TimeReversal) => "θ·",
Some(AntiunitaryKind::ComplexConjugation) => "K·",
};
if self.is_o3_mirror_plane(au) {
(format!("{au_sym}σ"), false)
} else if self.is_o3_inversion_centre(au) {
(format!("{au_sym}i"), false)
} else if *self.raw_proper_order() == ElementOrder::Inf
|| *self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.numer()
.expect("Unable to extract the numerator of the proper fraction.")
== 1
{
(format!("{au_sym}S"), false)
} else {
(format!("{au_sym}σC"), true)
}
}
SymmetryElementKind::ImproperInversionCentre(au) => {
let au_sym = match au {
None => "",
Some(AntiunitaryKind::TimeReversal) => "θ·",
Some(AntiunitaryKind::ComplexConjugation) => "K·",
};
if self.is_o3_mirror_plane(au) {
(format!("{au_sym}σ"), false)
} else if self.is_o3_inversion_centre(au) {
(format!("{au_sym}i"), false)
} else if *self.raw_proper_order() == ElementOrder::Inf
|| *self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.numer()
.expect("Unable to extract the numerator of the proper fraction.")
== 1
{
(format!("{au_sym}Ṡ"), false)
} else {
(format!("{au_sym}iC"), true)
}
}
};
let su2_sym = if self.is_su2_class_1() {
"(QΣ)"
} else if self.is_su2() {
"(Σ)"
} else {
""
};
if let Some(proper_fraction) = self.proper_fraction {
let au = self.contains_antiunitary();
let proper_order = if self.is_o3_identity(au)
|| self.is_o3_inversion_centre(au)
|| self.is_o3_mirror_plane(au)
{
String::new()
} else {
proper_fraction
.denom()
.expect("Unable to extract the denominator of the proper fraction.")
.to_string()
};
let proper_power = if needs_power {
let pow = *proper_fraction
.numer()
.expect("Unable to extract the numerator of the proper fraction.");
if pow > 1 {
format!("^{pow}")
} else {
String::new()
}
} else {
String::new()
};
format!(
"{main_symbol}{}{proper_order}{proper_power}{}{su2_sym}",
self.additional_superscript, self.additional_subscript
)
} else {
assert_eq!(*self.raw_proper_order(), ElementOrder::Inf);
let proper_angle = if let Some(proper_angle) = self.proper_angle {
format!("({:+.3})", proper_angle.abs())
} else {
String::new()
};
format!(
"{main_symbol}{}{}{proper_angle}{}{su2_sym}",
self.additional_superscript,
*self.raw_proper_order(),
self.additional_subscript
)
}
}
/// Returns the simplified symbol for this symmetry element, which classifies special symmetry
/// elements (identity, inversion centre, mirror planes), and which simplifies the power/order
/// ratio and displays only the absolute value of the power since symmetry elements do not
/// distinguish senses of rotations. Rotations of oposite directions are inverses of each
/// other, both of which must exist in the group.
///
/// # Returns
///
/// The simplified symbol for this symmetry element.
#[must_use]
pub fn get_simplified_symbol_signed_power(&self) -> String {
let (main_symbol, needs_power) = match self.kind {
SymmetryElementKind::Proper(au) => {
if self.is_o3_identity(au) {
match au {
None => ("E".to_owned(), false),
Some(AntiunitaryKind::TimeReversal) => ("θ".to_owned(), false),
Some(AntiunitaryKind::ComplexConjugation) => ("K".to_owned(), false),
}
} else {
let au_sym = match au {
None => "",
Some(AntiunitaryKind::TimeReversal) => "θ·",
Some(AntiunitaryKind::ComplexConjugation) => "K·",
};
(format!("{au_sym}C"), true)
}
}
SymmetryElementKind::ImproperMirrorPlane(au) => {
let au_sym = match au {
None => "",
Some(AntiunitaryKind::TimeReversal) => "θ·",
Some(AntiunitaryKind::ComplexConjugation) => "K·",
};
if self.is_o3_mirror_plane(au) {
(format!("{au_sym}σ"), false)
} else if self.is_o3_inversion_centre(au) {
(format!("{au_sym}i"), false)
} else if *self.raw_proper_order() == ElementOrder::Inf
|| *self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.numer()
.expect("Unable to extract the numerator of the proper fraction.")
== 1
{
(format!("{au_sym}S"), true)
} else {
(format!("{au_sym}σC"), true)
}
}
SymmetryElementKind::ImproperInversionCentre(au) => {
let au_sym = match au {
None => "",
Some(AntiunitaryKind::TimeReversal) => "θ·",
Some(AntiunitaryKind::ComplexConjugation) => "K·",
};
if self.is_o3_mirror_plane(au) {
(format!("{au_sym}σ"), false)
} else if self.is_o3_inversion_centre(au) {
(format!("{au_sym}i"), false)
} else if *self.raw_proper_order() == ElementOrder::Inf
|| *self
.proper_fraction
.expect("No proper fractions found for a finite-order element.")
.numer()
.expect("Unable to extract the numerator of the proper fraction.")
== 1
{
(format!("{au_sym}Ṡ"), true)
} else {
(format!("{au_sym}iC"), true)
}
}
};
let su2_sym = if self.is_su2_class_1() {
"(QΣ)"
} else if self.is_su2() {
"(Σ)"
} else {
""
};
if let Some(proper_fraction) = self.proper_fraction {
let au = self.contains_antiunitary();
let proper_order = if self.is_o3_identity(au)
|| self.is_o3_inversion_centre(au)
|| self.is_o3_mirror_plane(au)
{
String::new()
} else {
proper_fraction
.denom()
.expect("Unable to extract the denominator of the proper fraction.")
.to_string()
};
let proper_power = if needs_power {
let pow = *proper_fraction
.numer()
.expect("Unable to extract the numerator of the proper fraction.");
if !geometry::check_standard_positive_pole(
&self.proper_rotation_pole(),
self.threshold,
) {
format!("^(-{pow})")
} else if pow > 1 {
format!("^{pow}")
} else {
String::new()
}
} else {
String::new()
};
format!(
"{main_symbol}{}{proper_order}{proper_power}{}{su2_sym}",
self.additional_superscript, self.additional_subscript
)
} else {
assert_eq!(*self.raw_proper_order(), ElementOrder::Inf);
let proper_angle = if let Some(proper_angle) = self.proper_angle {
format!("({:+.3})", proper_angle.abs())
} else {
String::new()
};
format!(
"{main_symbol}{}{}{proper_angle}{}{su2_sym}",
self.additional_superscript,
*self.raw_proper_order(),
self.additional_subscript
)
}
}
/// Returns a copy of the current improper symmetry element that has been converted to the
/// required improper kind. For $`\mathsf{SU}'(2)`$ elements, the conversion will be carried
/// out in the same homotopy class.
///
/// To convert between the two improper kinds, we essentially seek integers
/// $`n, n' \in \mathbb{N}_{+}`$ and $`k \in \mathbb{Z}/n\mathbb{Z}`$,
/// $`k' \in \mathbb{Z}/n'\mathbb{Z}`$, such that
///
/// ```math
/// \sigma C_n^k = i C_{n'}^{k'},
/// ```
///
/// where the axes of all involved elements are parallel. By noting that
/// $`\sigma = i C_2`$ and that $`k`$ and $`k'`$ must have opposite signs, we can easily show
/// that, for $`k \ge 0, k' < 0`$,
///
/// ```math
/// \begin{aligned}
/// n' &= \frac{2n}{\operatorname{gcd}(2n, n - 2k)},\\
/// k' &= -\frac{n - 2k}{\operatorname{gcd}(2n, n - 2k)},
/// \end{aligned}
/// ```
///
/// whereas for $`k < 0, k' \ge 0`$,
///
/// ```math
/// \begin{aligned}
/// n' &= \frac{2n}{\operatorname{gcd}(2n, n + 2k)},\\
/// k' &= \frac{n + 2k}{\operatorname{gcd}(2n, n + 2k)}.
/// \end{aligned}
/// ```
///
/// The above relations are self-inverse. It can be further shown that
/// $`\operatorname{gcd}(n', k') = 1`$. Hence, for symmetry *element* conversions, we can simply
/// take $`k' = 1`$. This is because a symmetry element plays the role of a generator, and the
/// coprimality of $`n'`$ and $`k'`$ means that $`i C_{n'}^{1}`$ is as valid a generator as
/// $`i C_{n'}^{k'}`$.
///
/// # Arguments
///
/// * `improper_kind` - The improper kind to which `self` is to be converted. There is no need
/// to make sure the time reversal specification in `improper_kind` matches that of `self` as
/// the conversion will take care of this.
/// * `preserves_power` - Boolean indicating if the proper rotation power $`k'`$ should be
/// preserved or should be set to $`1`$.
///
/// # Returns
///
/// A copy of the current improper symmetry element that has been converted.
///
/// # Panics
///
/// Panics when `self` is not an improper element, or when `improper_kind` is not one of the
/// improper variants.
#[must_use]
pub fn convert_to_improper_kind(
&self,
improper_kind: &SymmetryElementKind,
preserves_power: bool,
) -> Self {
let au = self.contains_antiunitary();
assert!(
!self.is_o3_proper(au),
"Only improper elements can be converted."
);
let improper_kind = improper_kind.to_antiunitary(au);
assert!(
!matches!(improper_kind, SymmetryElementKind::Proper(_)),
"`improper_kind` must be one of the improper variants."
);
// self.kind and improper_kind must now have the same antiunitary part.
if self.kind == improper_kind {
return self.clone();
}
let (dest_order, dest_proper_power) = match *self.raw_proper_order() {
ElementOrder::Int(_) => {
let proper_fraction = self
.proper_fraction
.expect("No proper fractions found for an element with integer order.");
let n = *proper_fraction.denom().unwrap();
let k = if proper_fraction.is_sign_negative() {
-i32::try_from(*proper_fraction.numer().unwrap_or_else(|| {
panic!("Unable to retrieve the numerator of {proper_fraction:?}.")
}))
.expect("Unable to convert the numerator of the proper fraction to `i32`.")
} else {
i32::try_from(*proper_fraction.numer().unwrap_or_else(|| {
panic!("Unable to retrieve the numerator of {proper_fraction:?}.")
}))
.expect("Unable to convert the numerator of the proper fraction to `i32`.")
};
if k >= 0 {
// k >= 0, k2 < 0
let n_m_2k = n
.checked_sub(2 * k.unsigned_abs())
.expect("The value of `n - 2k` is negative.");
let n2 = ElementOrder::Int(2 * n / (gcd(2 * n, n_m_2k)));
let k2: i32 = if preserves_power {
-i32::try_from(n_m_2k / gcd(2 * n, n_m_2k))
.expect("Unable to convert `k'` to `i32`.")
} else {
1
};
(n2, k2)
} else {
// k < 0, k2 >= 0
let n_p_2k = n
.checked_sub(2 * k.unsigned_abs())
.expect("The value of `n + 2k` is negative.");
let n2 = ElementOrder::Int(2 * n / (gcd(2 * n, n_p_2k)));
let k2: i32 = if preserves_power {
i32::try_from(n_p_2k / (gcd(2 * n, n_p_2k)))
.expect("Unable to convert `k'` to `i32`.")
} else {
1
};
(n2, k2)
}
}
ElementOrder::Inf => (ElementOrder::Inf, 1),
};
match dest_order {
ElementOrder::Int(_) => Self::builder()
.threshold(self.threshold)
.proper_order(dest_order)
.proper_power(dest_proper_power)
.raw_axis(self.raw_axis)
.kind(improper_kind)
.rotation_group(self.rotation_group.clone())
.generator(self.generator)
.additional_superscript(self.additional_superscript.clone())
.additional_subscript(self.additional_subscript.clone())
.build()
.expect("Unable to construct a symmetry element."),
ElementOrder::Inf => {
if let Some(ang) = self.proper_angle {
Self::builder()
.threshold(self.threshold)
.proper_order(dest_order)
.proper_power(dest_proper_power)
.proper_angle(-std::f64::consts::PI + ang)
.raw_axis(self.raw_axis)
.kind(improper_kind)
.rotation_group(self.rotation_group.clone())
.generator(self.generator)
.additional_superscript(self.additional_superscript.clone())
.additional_subscript(self.additional_subscript.clone())
.build()
.expect("Unable to construct a symmetry element.")
} else {
Self::builder()
.threshold(self.threshold)
.proper_order(dest_order)
.proper_power(dest_proper_power)
.raw_axis(self.raw_axis)
.kind(improper_kind)
.rotation_group(self.rotation_group.clone())
.generator(self.generator)
.additional_superscript(self.additional_superscript.clone())
.additional_subscript(self.additional_subscript.clone())
.build()
.expect("Unable to construct a symmetry element.")
}
}
}
}
/// Converts the symmetry element to one with the desired time-reversal property.
///
/// # Arguments
///
/// * `tr` - A boolean indicating if time reversal is to be included.
///
/// # Returns
///
/// A new symmetry element with or without time reversal as indicated by `tr`.
pub fn to_tr(&self, tr: bool) -> Self {
let mut c_self = self.clone();
c_self.kind = c_self.kind.to_tr(tr);
c_self
}
/// Convert the proper rotation of the current element to one in $`\mathsf{SU}(2)`$.
///
/// # Arguments
///
/// * `normal` - A boolean indicating whether the resultant $`\mathsf{SU}(2)`$ proper rotation
/// is of homotopy class 0 (`true`) or 1 (`false`) when connected to the identity.
///
/// # Returns
///
/// A symmetry element in $`\mathsf{SU}(2)`$, or `None` if the current symmetry element
/// is already in $`\mathsf{SU}(2)`$.
pub fn to_su2(&self, normal: bool) -> Option<Self> {
if self.is_su2() {
None
} else {
let mut element = self.clone();
element.rotation_group = RotationGroup::SU2(normal);
Some(element)
}
}
/// The closeness of the symmetry element's axis to one of the three space-fixed Cartesian axes.
///
/// # Returns
///
/// A tuple of two values:
/// - A value $`\gamma \in [0, 1-1/\sqrt{3}]`$ indicating how close the axis is to one of the
/// three Cartesian axes. The closer $`\gamma`$ is to $`0`$, the closer the alignment.
/// - An index for the closest axis: `0` for $`z`$, `1` for $`y`$, `2` for $`x`$.
///
/// # Panics
///
/// Panics when $`\gamma`$ is outside the required closed interval $`[0, 1-1/\sqrt{3}]`$ by
/// more than the threshold value in `self`.
#[must_use]
pub fn closeness_to_cartesian_axes(&self) -> (f64, usize) {
let pos_axis = self.standard_positive_axis();
let rev_pos_axis = Vector3::new(pos_axis[2], pos_axis[1], pos_axis[0]);
let (amax_arg, amax_val) = rev_pos_axis.abs().argmax();
let axis_closeness = 1.0 - amax_val;
let thresh = self.threshold;
assert!(
-thresh <= axis_closeness && axis_closeness <= (1.0 - 1.0 / 3.0f64.sqrt() + thresh)
);
// closest axis: 0 for z, 1 for y, 2 for x
// This is so that z axes are preferred.
let closest_axis = amax_arg;
(axis_closeness, closest_axis)
}
}
impl fmt::Debug for SymmetryElement {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let signed_axis = self.signed_axis();
write!(
f,
"{}({:+.3}, {:+.3}, {:+.3})",
self.get_full_symbol(),
signed_axis[0] + 0.0,
signed_axis[1] + 0.0,
signed_axis[2] + 0.0
)
}
}
impl fmt::Display for SymmetryElement {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let au = self.contains_antiunitary();
if self.is_o3_identity(au) || self.is_o3_inversion_centre(au) {
write!(f, "{}", self.get_simplified_symbol())
} else {
let signed_axis = self.signed_axis();
write!(
f,
"{}({:+.3}, {:+.3}, {:+.3})",
self.get_simplified_symbol(),
signed_axis[0] + 0.0,
signed_axis[1] + 0.0,
signed_axis[2] + 0.0
)
}
}
}
impl PartialEq for SymmetryElement {
/// Two symmetry elements are equal if and only if the following conditions are all satisfied:
///
/// * they are both in the same rotation group and belong to the same homotopy class;
/// * they are both proper or improper;
/// * they both have the same antiunitary properties;
/// * their axes are either parallel or anti-parallel;
/// * their proper rotation angles have equal absolute values.
///
/// For improper elements, proper rotation angles are taken in the inversion centre convention.
///
/// Thus, symmetry element equality is less strict than symmetry operation equality. This is so
/// that parallel or anti-parallel symmetry elements with the same spatial and time-reversal
/// parities and angle of rotation are deemed identical, thus facilitating symmetry detection
/// where one does not yet care much about directions of rotations.
#[allow(clippy::too_many_lines)]
fn eq(&self, other: &Self) -> bool {
if self.rotation_group != other.rotation_group {
// Different rotation groups or homotopy classes.
return false;
}
if self.contains_antiunitary() != other.contains_antiunitary() {
// Different anti-unitary kinds.
return false;
}
let au = self.contains_antiunitary();
if self.is_o3_proper(au) != other.is_o3_proper(au) {
// Different spatial parities.
return false;
}
if self.is_o3_identity(au) && other.is_o3_identity(au) {
// Both are spatial identity.
// assert_eq!(
// misc::calculate_hash(self),
// misc::calculate_hash(other),
// "{self} and {other} have unequal hashes."
// );
// return true;
return misc::calculate_hash(self) == misc::calculate_hash(other);
}
if self.is_o3_inversion_centre(au) && other.is_o3_inversion_centre(au) {
// Both are spatial inversion centre.
// assert_eq!(
// misc::calculate_hash(self),
// misc::calculate_hash(other),
// "{self} and {other} have unequal hashes."
// );
// return true;
return misc::calculate_hash(self) == misc::calculate_hash(other);
}
let thresh = (self.threshold * other.threshold).sqrt();
let result = if self.is_o3_proper(au) {
// Proper.
// Parallel or anti-parallel axes.
let similar_poles = approx::relative_eq!(
geometry::get_standard_positive_pole(&self.raw_axis, thresh),
geometry::get_standard_positive_pole(&other.raw_axis, thresh),
epsilon = thresh,
max_relative = thresh
);
// Same angle of rotation (irrespective of signs).
let similar_angles = match (*self.raw_proper_order(), *other.raw_proper_order()) {
(ElementOrder::Inf, ElementOrder::Inf) => {
match (self.proper_angle, other.proper_angle) {
(Some(s_angle), Some(o_angle)) => {
approx::relative_eq!(
s_angle.abs(),
o_angle.abs(),
epsilon = thresh,
max_relative = thresh
)
}
(None, None) => similar_poles,
_ => false,
}
}
(ElementOrder::Int(_), ElementOrder::Int(_)) => {
let c_proper_fraction = self
.proper_fraction
.expect("Proper fraction for `self` not found.");
let o_proper_fraction = other
.proper_fraction
.expect("Proper fraction for `other` not found.");
c_proper_fraction.abs() == o_proper_fraction.abs()
}
_ => false,
};
similar_poles && similar_angles
} else {
// Improper => convert to inversion-centre convention.
let inv_au = SymmetryElementKind::ImproperInversionCentre(au);
let c_self = self.convert_to_improper_kind(&inv_au, false);
let c_other = other.convert_to_improper_kind(&inv_au, false);
// Parallel or anti-parallel axes.
let similar_poles = approx::relative_eq!(
geometry::get_standard_positive_pole(&c_self.raw_axis, thresh),
geometry::get_standard_positive_pole(&c_other.raw_axis, thresh),
epsilon = thresh,
max_relative = thresh
);
// Same angle of rotation (irrespective of signs).
let similar_angles = match (*c_self.raw_proper_order(), *c_other.raw_proper_order()) {
(ElementOrder::Inf, ElementOrder::Inf) => {
match (c_self.proper_angle, c_other.proper_angle) {
(Some(s_angle), Some(o_angle)) => {
approx::relative_eq!(
s_angle.abs(),
o_angle.abs(),
epsilon = thresh,
max_relative = thresh
)
}
(None, None) => similar_poles,
_ => false,
}
}
(ElementOrder::Int(_), ElementOrder::Int(_)) => {
let c_proper_fraction = c_self
.proper_fraction
.expect("Proper fraction for `c_self` not found.");
let o_proper_fraction = c_other
.proper_fraction
.expect("Proper fraction for `c_other` not found.");
c_proper_fraction.abs() == o_proper_fraction.abs()
}
_ => false,
};
similar_poles && similar_angles
};
// if result {
// assert_eq!(
// misc::calculate_hash(self),
// misc::calculate_hash(other),
// "`{self}` and `{other}` have unequal hashes."
// );
// }
result && (misc::calculate_hash(self) == misc::calculate_hash(other))
}
}
impl Eq for SymmetryElement {}
impl Hash for SymmetryElement {
fn hash<H: Hasher>(&self, state: &mut H) {
self.rotation_group.hash(state);
let au = self.contains_antiunitary();
au.hash(state);
self.is_o3_proper(au).hash(state);
if self.is_o3_identity(au) || self.is_o3_inversion_centre(au) {
true.hash(state);
} else if self.kind == SymmetryElementKind::ImproperMirrorPlane(au) {
let c_self = self
.convert_to_improper_kind(&SymmetryElementKind::ImproperInversionCentre(au), false);
let pole = geometry::get_standard_positive_pole(&c_self.raw_axis, c_self.threshold);
pole[0]
.round_factor(self.threshold)
.integer_decode()
.hash(state);
pole[1]
.round_factor(self.threshold)
.integer_decode()
.hash(state);
pole[2]
.round_factor(self.threshold)
.integer_decode()
.hash(state);
if let ElementOrder::Inf = *c_self.raw_proper_order() {
if let Some(angle) = c_self.proper_angle {
angle
.abs()
.round_factor(self.threshold)
.integer_decode()
.hash(state);
} else {
0.hash(state);
}
} else {
c_self
.proper_fraction
.expect("No proper fractions for `c_self` found.")
.abs()
.hash(state);
};
} else {
let pole = geometry::get_standard_positive_pole(&self.raw_axis, self.threshold);
pole[0]
.round_factor(self.threshold)
.integer_decode()
.hash(state);
pole[1]
.round_factor(self.threshold)
.integer_decode()
.hash(state);
pole[2]
.round_factor(self.threshold)
.integer_decode()
.hash(state);
if let ElementOrder::Inf = *self.raw_proper_order() {
if let Some(angle) = self.proper_angle {
angle
.abs()
.round_factor(self.threshold)
.integer_decode()
.hash(state);
} else {
0.hash(state);
}
} else {
self.proper_fraction
.expect("No proper fractions for `self` found.")
.abs()
.hash(state);
};
};
}
}
/// Time-reversal antiunitary kind.
pub const TR: AntiunitaryKind = AntiunitaryKind::TimeReversal;
/// Proper rotation symmetry element kind.
pub const ROT: SymmetryElementKind = SymmetryElementKind::Proper(None);
/// Improper symmetry element kind in the mirror-plane convention.
pub const SIG: SymmetryElementKind = SymmetryElementKind::ImproperMirrorPlane(None);
/// Improper symmetry element kind in the inversion-centre convention.
pub const INV: SymmetryElementKind = SymmetryElementKind::ImproperInversionCentre(None);
/// Time-reversed proper rotation symmetry element kind.
pub const TRROT: SymmetryElementKind = SymmetryElementKind::Proper(Some(TR));
/// Time-reversed improper symmetry element kind in the mirror-plane convention.
pub const TRSIG: SymmetryElementKind = SymmetryElementKind::ImproperMirrorPlane(Some(TR));
/// Time-reversed improper symmetry element kind in the inversion-centre convention.
pub const TRINV: SymmetryElementKind = SymmetryElementKind::ImproperInversionCentre(Some(TR));
/// Rotation group $`\mathsf{SO}(3)`$.
pub const SO3: RotationGroup = RotationGroup::SO3;
/// Rotation group $`\mathsf{SU}(2)`$, homotopy path of class 0.
pub const SU2_0: RotationGroup = RotationGroup::SU2(true);
/// Rotation group $`\mathsf{SU}(2)`$, homotopy path of class 1.
pub const SU2_1: RotationGroup = RotationGroup::SU2(false);