1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
//! Symmetry operations.
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::Mul;
use approx;
use derive_builder::Builder;
use fraction;
use nalgebra::{Point3, Vector3};
use ndarray::{Array2, Axis, ShapeBuilder};
use num_traits::{Inv, Pow, Zero};
use ordered_float::OrderedFloat;
use serde::{Deserialize, Serialize};
use crate::auxiliary::geometry::{
self, improper_rotation_matrix, proper_rotation_matrix, PositiveHemisphere, Transform, IMINV,
};
use crate::auxiliary::misc::{self, HashableFloat};
use crate::group::FiniteOrder;
use crate::permutation::{IntoPermutation, PermutableCollection, Permutation};
use crate::symmetry::symmetry_element::{
AntiunitaryKind, SymmetryElement, SymmetryElementKind, INV, ROT, SIG, SO3, SU2_0, SU2_1, TRINV,
TRROT, TRSIG,
};
use crate::symmetry::symmetry_element_order::ElementOrder;
type F = fraction::GenericFraction<u32>;
type Quaternion = (f64, Vector3<f64>);
#[cfg(test)]
#[path = "symmetry_operation_tests.rs"]
mod symmetry_operation_tests;
// =================
// Trait definitions
// =================
/// Trait for special symmetry transformations.
pub trait SpecialSymmetryTransformation {
// =================
// Group-theoretical
// =================
/// Checks if the proper rotation part of the symmetry operation is in $`\mathsf{SU}(2)`$.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation contains an $`\mathsf{SU}(2)`$ proper
/// rotation.
fn is_su2(&self) -> bool;
/// Checks if the proper rotation part of the symmetry operation is in $`\mathsf{SU}(2)`$ and
/// connected to the identity via a homotopy path of class 1.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation contains an $`\mathsf{SU}(2)`$ proper
/// rotation connected to the identity via a homotopy path of class 1.
fn is_su2_class_1(&self) -> bool;
// ============
// Spatial part
// ============
/// Checks if the spatial part of the symmetry operation is proper.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is proper.
fn is_proper(&self) -> bool;
/// Checks if the spatial part of the symmetry operation is the spatial identity.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is the spatial identity.
fn is_spatial_identity(&self) -> bool;
/// Checks if the spatial part of the symmetry operation is a spatial binary rotation.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is a spatial binary
/// rotation.
fn is_spatial_binary_rotation(&self) -> bool;
/// Checks if the spatial part of the symmetry operation is the spatial inversion.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is the spatial inversion.
fn is_spatial_inversion(&self) -> bool;
/// Checks if the spatial part of the symmetry operation is a spatial reflection.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is a spatial reflection.
fn is_spatial_reflection(&self) -> bool;
// ==================
// Time-reversal part
// ==================
/// Checks if the symmetry operation contains time reversal.
///
/// # Returns
///
/// A boolean indicating if the symmetry oppperation contains time reversal.
fn contains_time_reversal(&self) -> bool;
// ==========================
// Overall - provided methods
// ==========================
/// Checks if the symmetry operation is the identity in $`\mathsf{O}(3)`$, `E`, or
/// in $`\mathsf{SU}(2)`$, `E(Σ)`.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation is the identity.
fn is_identity(&self) -> bool {
self.is_spatial_identity() && !self.contains_time_reversal() && !self.is_su2_class_1()
}
/// Checks if the symmetry operation is a pure time-reversal in $`\mathsf{O}(3)`$, `θ`, or
/// in $`\mathsf{SU}(2)`$, `θ(Σ)`.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation is a pure time-reversal.
fn is_time_reversal(&self) -> bool {
self.is_spatial_identity() && self.contains_time_reversal() && !self.is_su2_class_1()
}
/// Checks if the symmetry operation is an inversion in $`\mathsf{O}(3)`$, `i`, but not in
/// $`\mathsf{SU}(2)`$, `i(Σ)`.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation is an inversion in $`\mathsf{O}(3)`$.
fn is_inversion(&self) -> bool {
self.is_spatial_inversion() && !self.contains_time_reversal() && !self.is_su2()
}
/// Checks if the symmetry operation is a reflection in $`\mathsf{O}(3)`$, `σ`, but not in
/// $`\mathsf{SU}(2)`$, `σ(Σ)`.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation is a reflection in $`\mathsf{O}(3)`$.
fn is_reflection(&self) -> bool {
self.is_spatial_reflection() && !self.contains_time_reversal() && !self.is_su2()
}
}
// ======================================
// Struct definitions and implementations
// ======================================
/// Structure for managing symmetry operations generated from symmetry elements.
///
/// A symmetry element serves as a generator for symmetry operations. Thus, a symmetry element
/// together with a signed integer indicating the number of times the symmetry element is applied
/// (positively or negatively) specifies a symmetry operation.
#[derive(Builder, Clone, Serialize, Deserialize)]
pub struct SymmetryOperation {
/// The generating symmetry element for this symmetry operation.
pub generating_element: SymmetryElement,
/// The integral power indicating the number of times
/// [`Self::generating_element`] is applied to form the symmetry operation.
pub power: i32,
/// The total proper rotation angle associated with this operation (after taking into account
/// the power of the operation).
///
/// This is simply the proper rotation angle of [`Self::generating_element`] multiplied by
/// [`Self::power`] and then folded onto the open interval $`(-\pi, \pi]`$.
///
/// This angle lies in the open interval $`(-\pi, \pi]`$. For improper operations, this angle
/// depends on the convention used to describe the [`Self::generating_element`].
#[builder(setter(skip), default = "self.calc_total_proper_angle()")]
total_proper_angle: f64,
/// The fraction $`pk/n \in (-1/2, 1/2]`$ of the proper rotation, represented exactly for
/// hashing and comparison purposes.
///
/// This is not defined for operations with infinite-order generating elements.
#[builder(setter(skip), default = "self.calc_total_proper_fraction()")]
pub(crate) total_proper_fraction: Option<F>,
/// The positive hemisphere used for distinguishing positive and negative rotation poles. If
/// `None`, the standard positive hemisphere as defined in S.L. Altmann, Rotations,
/// Quaternions, and Double Groups (Dover Publications, Inc., New York, 2005) is used.
#[builder(default = "None")]
pub positive_hemisphere: Option<PositiveHemisphere>,
}
impl SymmetryOperationBuilder {
fn calc_total_proper_angle(&self) -> f64 {
let (total_proper_angle, _) = geometry::normalise_rotation_angle(
self.generating_element
.as_ref()
.expect("Generating element has not been set.")
.proper_angle
.expect("Proper angle has not been set.")
* (f64::from(self.power.expect("Power has not been set."))),
self.generating_element
.as_ref()
.expect("Generating element has not been set.")
.threshold,
);
total_proper_angle
}
fn calc_total_proper_fraction(&self) -> Option<F> {
match self
.generating_element
.as_ref()
.expect("Generating element has not been set.")
.proper_fraction
{
Some(frac) => {
let pow = self.power.expect("Power has not been set.");
let (total_proper_fraction, _) =
geometry::normalise_rotation_fraction(frac * F::from(pow));
Some(total_proper_fraction)
}
None => None,
}
}
}
impl SymmetryOperation {
/// Returns a builder to construct a new symmetry operation.
///
/// # Returns
///
/// A builder to construct a new symmetry operation.
#[must_use]
pub(crate) fn builder() -> SymmetryOperationBuilder {
SymmetryOperationBuilder::default()
}
/// Constructs a finite-order-element-generated symmetry operation from a quaternion.
///
/// The rotation angle encoded in the quaternion is taken to be non-negative and assigned as
/// the proper rotation angle associated with the element generating the operation.
///
/// If an improper operation is required, its generator will be constructed in the
/// inversion-centre convention.
///
/// # Arguments
///
/// * `qtn` - A quaternion encoding the proper rotation associated with the
/// generating element of the operation to be constructed.
/// * `proper` - A boolean indicating if the operation is proper or improper.
/// * `thresh` - Threshold for comparisons.
/// * `tr` - A boolean indicating if the resulting symmetry operation should be accompanied by
/// a time-reversal operation.
/// * `su2` - A boolean indicating if the resulting symmetry operation is to contain a proper
/// rotation in $`\mathsf{SU}(2)`$. The homotopy class of the operation will be deduced from
/// the specified quaternion.
/// * `poshem` - An option containing any custom positive hemisphere used to distinguish
/// positive and negative rotation poles.
///
/// # Returns
///
/// The constructed symmetry operation.
///
/// # Panics
///
/// Panics when the scalar part of the provided quaternion lies outside $`[0, 1]`$ by more than
/// the specified threshold `thresh`, or when the rotation angle associated with the quaternion
/// cannot be gracefully converted into an integer tuple of order and power.
#[must_use]
pub fn from_quaternion(
qtn: Quaternion,
proper: bool,
thresh: f64,
max_trial_power: u32,
tr: bool,
su2: bool,
poshem: Option<PositiveHemisphere>,
) -> Self {
let (scalar_part, vector_part) = qtn;
let kind = if proper {
if tr {
TRROT
} else {
ROT
}
} else if tr {
TRINV
} else {
INV
};
let element = if su2 {
// SU(2)
assert!(
-1.0 - thresh <= scalar_part && scalar_part <= 1.0 + thresh,
"The scalar part of the quaternion must be in the interval [-1, +1]."
);
let (axis, order, power, su2_grp) =
if approx::abs_diff_eq!(scalar_part, 1.0, epsilon = thresh,) {
// Zero-degree rotation, i.e. identity or inversion, class 0
(Vector3::z(), 1u32, 1u32, SU2_0)
} else if approx::abs_diff_eq!(scalar_part, -1.0, epsilon = thresh,) {
// 360-degree rotation, i.e. identity or inversion, class 1
(Vector3::z(), 1u32, 1u32, SU2_1)
} else if approx::abs_diff_eq!(scalar_part, 0.0, epsilon = thresh,) {
// 180-degree rotation, i.e. binary rotation or reflection. Whether the resultant
// operation is in class 0 or class 1 depends on whether the vector part is in the
// positive hemisphere or negative hemisphere.
let positive_axis = poshem
.as_ref()
.cloned()
.unwrap_or_default()
.get_positive_pole(&vector_part, thresh);
(
positive_axis,
2u32,
1u32,
if poshem
.as_ref()
.cloned()
.unwrap_or_default()
.check_positive_pole(&vector_part, thresh)
{
SU2_0
} else {
SU2_1
},
)
} else {
// scalar_part != 0, 1, or -1
let (standardised_scalar_part, standardised_vector_part, su2_grp) =
if scalar_part > 0.0 {
(scalar_part, vector_part, SU2_0)
} else {
(-scalar_part, -vector_part, SU2_1)
};
let half_proper_angle = standardised_scalar_part.acos();
let proper_angle = 2.0 * half_proper_angle;
let axis = standardised_vector_part / half_proper_angle.sin();
let proper_fraction =
geometry::get_proper_fraction(proper_angle, thresh, max_trial_power)
.unwrap_or_else(|| {
panic!(
"No proper fraction could be found for angle `{proper_angle}`."
)
});
(
axis,
*proper_fraction.denom().unwrap_or_else(|| {
panic!("Unable to extract the denominator of `{proper_fraction}`.")
}),
*proper_fraction.numer().unwrap_or_else(|| {
panic!("Unable to extract the numerator of `{proper_fraction}`.")
}),
su2_grp,
)
};
SymmetryElement::builder()
.threshold(thresh)
.proper_order(ElementOrder::Int(order))
.proper_power(
power
.try_into()
.expect("Unable to convert the proper power to `i32`."),
)
.raw_axis(axis)
.kind(kind)
.rotation_group(su2_grp)
.build()
.unwrap_or_else(|_|
panic!("Unable to construct a symmetry element of kind `{kind}` with the proper part in SU(2).")
)
} else {
// SO(3)
assert!(
-thresh <= scalar_part && scalar_part <= 1.0 + thresh,
"The scalar part of the quaternion must be in the interval [0, +1] when only SO(3) rotations are considered."
);
let (axis, order, power) = if approx::abs_diff_eq!(scalar_part, 1.0, epsilon = thresh,)
{
// Zero-degree rotation, i.e. identity or inversion
(Vector3::z(), 1u32, 1i32)
} else {
let half_proper_angle = scalar_part.acos(); // acos returns values in [0, π]
let proper_angle = 2.0 * half_proper_angle;
let axis = vector_part / half_proper_angle.sin();
let proper_fraction =
geometry::get_proper_fraction(proper_angle, thresh, max_trial_power)
.unwrap_or_else(|| {
panic!("No proper fraction could be found for angle `{proper_angle}`.")
});
let proper_power = if proper_fraction.is_sign_positive() {
i32::try_from(*proper_fraction.numer().unwrap_or_else(|| {
panic!("Unable to extract the numerator of `{proper_fraction}`.")
}))
.expect("Unable to convert the numerator of the proper fraction to `i32`.")
} else {
-i32::try_from(*proper_fraction.numer().unwrap_or_else(|| {
panic!("Unable to extract the numerator of `{proper_fraction}`.")
}))
.expect("Unable to convert the numerator of the proper fraction to `i32`.")
};
(
axis,
*proper_fraction.denom().unwrap_or_else(|| {
panic!("Unable to extract the denominator of `{proper_fraction}`.")
}),
proper_power,
)
};
SymmetryElement::builder()
.threshold(thresh)
.proper_order(ElementOrder::Int(order))
.proper_power(power)
.raw_axis(axis)
.kind(kind)
.rotation_group(SO3)
.build()
.expect(
"Unable to construct a symmetry element without an associated spin rotation.",
)
};
SymmetryOperation::builder()
.generating_element(element)
.power(1)
.positive_hemisphere(poshem)
.build()
.unwrap_or_else(|_|
panic!(
"Unable to construct a symmetry operation of kind `{kind}` with {} rotation from the quaternion `{qtn:?}`.",
if su2 { "SU(2)" } else { "SO(3)" }
)
)
}
/// Finds the quaternion associated with this operation.
///
/// The rotation angle encoded in the quaternion is taken to be non-negative and assigned as
/// the proper rotation angle associated with the element generating the operation.
///
/// If this is an operation generated from an improper element, the inversion-centre convention
/// will be used to determine the angle of proper rotation.
///
/// Both $`\mathsf{SO}(3)`$ and $`\mathsf{SU}(2)`$ proper rotations are supported. For
/// $`\mathsf{SO}(3)`$ proper rotations, only quaternions in the standardised form are
/// returned.
///
/// See S.L. Altmann, Rotations, Quaternions, and Double Groups (Dover Publications, Inc., New
/// York, 2005) (Chapter 9) for further information.
///
/// # Returns
///
/// The quaternion associated with this operation.
///
/// # Panics
///
/// Panics if the calculated scalar part of the quaternion lies outside the closed interval
/// $`[0, 1]`$ by more than the threshold value stored in the generating element in `self`.
#[must_use]
pub fn calc_quaternion(&self) -> Quaternion {
let c_self = if self.is_proper() {
self.clone()
} else {
// Time-reversal does not matter here.
self.convert_to_improper_kind(&INV)
};
debug_assert_eq!(
self.is_su2_class_1(),
c_self.is_su2_class_1(),
"`{self}` and `{c_self}` are in different homotopy classes."
);
// We only need the absolute value of the angle. Its sign information is
// encoded in the pole. `abs_angle` thus lies in [0, π], and so
// cos(abs_angle/2) >= 0 and sin(abs_angle/2) >= 0.
// The scalar part is guaranteed to be in [0, 1].
// For binary rotations, the scalar part is zero, but the definition of pole ensures that
// the vector part still lies in the positive hemisphere.
let abs_angle = c_self.total_proper_angle.abs();
let scalar_part = (0.5 * abs_angle).cos();
let vector_part = (0.5 * abs_angle).sin() * c_self.calc_pole().coords;
debug_assert!(
-self.generating_element.threshold <= scalar_part
&& scalar_part <= 1.0 + self.generating_element.threshold
);
debug_assert!(if approx::abs_diff_eq!(
scalar_part,
0.0,
epsilon = c_self.generating_element.threshold
) {
c_self
.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.check_positive_pole(&vector_part, c_self.generating_element.threshold)
} else {
true
},);
if self.is_su2_class_1() {
(-scalar_part, -vector_part)
} else {
(scalar_part, vector_part)
}
}
/// Finds the pole associated with this operation with respect to the positive hemisphere
/// defined in [`Self::positive_hemisphere`].
///
/// This is the point on the unit sphere that is left invariant by the operation.
///
/// For improper operations, the inversion-centre convention is used to define
/// the pole. This allows a proper rotation and its improper partner to have the
/// same pole, thus facilitating the consistent specification of poles for the
/// identity / inversion and binary rotations / reflections.
///
/// Note that binary rotations / reflections have unique poles on the positive
/// hemisphere (*i.e.*, $`C_2(\hat{\mathbf{n}}) = C_2^{-1}(\hat{\mathbf{n}})`$
/// and $`\sigma(\hat{\mathbf{n}}) = \sigma^{-1}(\hat{\mathbf{n}})`$).
///
/// See S.L. Altmann, Rotations, Quaternions, and Double Groups (Dover
/// Publications, Inc., New York, 2005) (Chapter 9) for further information.
///
/// # Returns
///
/// The pole associated with this operation.
///
/// # Panics
///
/// Panics when no total proper fractions could be found for this operation.
#[must_use]
pub fn calc_pole(&self) -> Point3<f64> {
let op = if self.is_proper() {
self.clone()
} else {
// Time-reversal does not matter here.
self.convert_to_improper_kind(&INV)
};
match *op.generating_element.raw_proper_order() {
ElementOrder::Int(_) => {
let frac_1_2 = F::new(1u32, 2u32);
let total_proper_fraction = op
.total_proper_fraction
.expect("No total proper fractions found.");
if total_proper_fraction == frac_1_2 {
// Binary rotations or reflections
Point3::from(
self.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.get_positive_pole(
&op.generating_element.raw_axis,
op.generating_element.threshold,
),
)
} else if total_proper_fraction > F::zero() {
// Positive rotation angles
Point3::from(op.generating_element.raw_axis)
} else if total_proper_fraction < F::zero() {
// Negative rotation angles
Point3::from(-op.generating_element.raw_axis)
} else {
// Identity or inversion
assert!(total_proper_fraction.is_zero());
Point3::from(Vector3::z())
}
}
ElementOrder::Inf => {
if approx::abs_diff_eq!(
op.total_proper_angle,
std::f64::consts::PI,
epsilon = op.generating_element.threshold
) {
// Binary rotations or reflections
Point3::from(
self.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.get_positive_pole(
&op.generating_element.raw_axis,
op.generating_element.threshold,
),
)
} else if approx::abs_diff_ne!(
op.total_proper_angle,
0.0,
epsilon = op.generating_element.threshold
) {
Point3::from(op.total_proper_angle.signum() * op.generating_element.raw_axis)
} else {
approx::assert_abs_diff_eq!(
op.total_proper_angle,
0.0,
epsilon = op.generating_element.threshold
);
Point3::from(Vector3::z())
}
}
}
}
/// Finds the pole associated with the proper rotation of this operation.
///
/// This is the point on the unit sphere that is left invariant by the proper rotation part of
/// the operation.
///
/// For improper operations, no conversions will be performed, unlike in [`Self::calc_pole`].
///
/// Note that binary rotations have unique poles on the positive hemisphere (*i.e.*,
/// $`C_2(\hat{\mathbf{n}}) = C_2^{-1}(\hat{\mathbf{n}})`$ and
/// $`\sigma(\hat{\mathbf{n}}) = \sigma^{-1}(\hat{\mathbf{n}})`$).
///
/// See S.L. Altmann, Rotations, Quaternions, and Double Groups (Dover
/// Publications, Inc., New York, 2005) (Chapter 9) for further information.
///
/// # Returns
///
/// The pole associated with the proper rotation of this operation.
///
/// # Panics
///
/// Panics when no total proper fractions could be found for this operation.
#[must_use]
pub fn calc_proper_rotation_pole(&self) -> Point3<f64> {
match *self.generating_element.raw_proper_order() {
ElementOrder::Int(_) => {
let frac_1_2 = F::new(1u32, 2u32);
let total_proper_fraction = self
.total_proper_fraction
.expect("No total proper fractions found.");
if total_proper_fraction == frac_1_2 {
// Binary rotations or reflections
Point3::from(
self.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.get_positive_pole(
&self.generating_element.raw_axis,
self.generating_element.threshold,
),
)
} else if total_proper_fraction > F::zero() {
// Positive rotation angles
Point3::from(self.generating_element.raw_axis)
} else if total_proper_fraction < F::zero() {
// Negative rotation angles
Point3::from(-self.generating_element.raw_axis)
} else {
// Identity or inversion
assert!(total_proper_fraction.is_zero());
Point3::from(Vector3::z())
}
}
ElementOrder::Inf => {
if approx::abs_diff_eq!(
self.total_proper_angle,
std::f64::consts::PI,
epsilon = self.generating_element.threshold
) {
// Binary rotations or reflections
Point3::from(
self.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.get_positive_pole(
&self.generating_element.raw_axis,
self.generating_element.threshold,
),
)
} else if approx::abs_diff_ne!(
self.total_proper_angle,
0.0,
epsilon = self.generating_element.threshold
) {
Point3::from(
self.total_proper_angle.signum() * self.generating_element.raw_axis,
)
} else {
approx::assert_abs_diff_eq!(
self.total_proper_angle,
0.0,
epsilon = self.generating_element.threshold
);
Point3::from(Vector3::z())
}
}
}
}
/// Finds the pole angle associated with this operation.
///
/// This is the non-negative angle that, together with the pole, uniquely determines the proper
/// part of this operation. This angle lies in the interval $`[0, \pi]`$.
///
/// For improper operations, the inversion-centre convention is used to define the pole angle.
/// This allows a proper rotation and its improper partner to have the same pole angle, thus
/// facilitating the consistent specification of poles for the identity / inversion and binary
/// rotations / reflections.
///
/// # Returns
///
/// The pole angle associated with this operation.
///
/// # Panics
///
/// Panics when no total proper fractions could be found for this operation.
#[must_use]
pub fn calc_pole_angle(&self) -> f64 {
let c_self = if self.is_proper() {
self.clone()
} else {
// Time-reversal does not matter here.
self.convert_to_improper_kind(&INV)
};
c_self.total_proper_angle.abs()
}
/// Returns a copy of the current symmetry operation with the generating element
/// converted to the requested improper kind (power-preserving), provided that
/// it is an improper element.
///
/// # Arguments
///
/// * `improper_kind` - The improper kind to which `self` is to be converted. There is no need
/// to make sure the time reversal specification in `improper_kind` matches that of the
/// generating element of `self` as the conversion will take care of this.
///
/// # Panics
///
/// Panics if the converted symmetry operation cannot be constructed.
#[must_use]
pub fn convert_to_improper_kind(&self, improper_kind: &SymmetryElementKind) -> Self {
let c_element = self
.generating_element
.convert_to_improper_kind(improper_kind, true);
debug_assert_eq!(
self.generating_element.is_su2_class_1(),
c_element.is_su2_class_1()
);
Self::builder()
.generating_element(c_element)
.power(self.power)
.positive_hemisphere(self.positive_hemisphere.clone())
.build()
.expect("Unable to construct a symmetry operation.")
}
/// Converts the current symmetry operation $`O`$ to an equivalent symmetry element $`E`$ such
/// that $`O = E^1`$.
///
/// The proper rotation axis of $`E`$ is the proper rotation pole (*not* the overall pole) of
/// $`O`$, and the proper rotation angle of $`E`$ is the total proper rotation angle of $`O`$,
/// either as an (order, power) integer tuple or an angle floating-point number.
///
/// If $`O`$ is improper, then the improper generating element for $`E`$ is the same as that in
/// the generating element of $`O`$.
///
/// # Returns
///
/// The equivalent symmetry element $`E`$.
pub fn to_symmetry_element(&self) -> SymmetryElement {
let kind = if self.is_proper() {
let tr = self.contains_time_reversal();
if tr {
TRROT
} else {
ROT
}
} else {
self.generating_element.kind
};
let additional_superscript = if self.is_proper() {
String::new()
} else {
self.generating_element.additional_superscript.clone()
};
let additional_subscript = if self.is_proper() {
String::new()
} else {
self.generating_element.additional_subscript.clone()
};
let rotation_group = if self.is_su2_class_1() {
SU2_1
} else if self.is_su2() {
SU2_0
} else {
SO3
};
let axis = if self.is_spatial_reflection() {
self.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.get_positive_pole(
self.generating_element.raw_axis(),
self.generating_element.threshold,
)
} else {
self.calc_proper_rotation_pole().coords
};
if let Some(total_proper_fraction) = self.total_proper_fraction {
let proper_order = *total_proper_fraction
.denom()
.expect("Unable to extract the denominator of the total proper fraction.");
let numer = *total_proper_fraction
.numer()
.expect("Unable to extract the numerator of the total proper fraction.");
let proper_power =
i32::try_from(numer).expect("Unable to convert the numerator to `i32`.");
SymmetryElement::builder()
.threshold(self.generating_element.threshold())
.proper_order(ElementOrder::Int(proper_order))
.proper_power(proper_power)
.raw_axis(axis)
.kind(kind)
.rotation_group(rotation_group)
.additional_superscript(additional_superscript)
.additional_subscript(additional_subscript)
.build()
.unwrap()
} else {
let proper_angle = self.total_proper_angle;
SymmetryElement::builder()
.threshold(self.generating_element.threshold())
.proper_order(ElementOrder::Inf)
.proper_angle(proper_angle)
.raw_axis(axis)
.kind(kind)
.rotation_group(rotation_group)
.additional_superscript(additional_superscript)
.additional_subscript(additional_subscript)
.build()
.unwrap()
}
}
/// Generates the abbreviated symbol for this symmetry operation.
#[must_use]
pub fn get_abbreviated_symbol(&self) -> String {
self.to_symmetry_element()
.get_simplified_symbol_signed_power()
}
/// Returns the representation matrix for the spatial part of this symmetry operation.
///
/// This representation matrix is in the basis of coordinate *functions* $`(y, z, x)`$.
#[must_use]
pub fn get_3d_spatial_matrix(&self) -> Array2<f64> {
if self.is_proper() {
if self.is_identity() || self.is_time_reversal() {
Array2::<f64>::eye(3)
} else {
let angle = self.calc_pole_angle();
let axis = self.calc_pole().coords;
let mat = proper_rotation_matrix(angle, &axis, 1);
// nalgebra matrix iter is column-major.
Array2::<f64>::from_shape_vec(
(3, 3).f(),
mat.iter().copied().collect::<Vec<_>>(),
)
.unwrap_or_else(
|_| panic!(
"Unable to construct a three-dimensional rotation matrix for angle {angle} and axis {axis}."
)
)
.select(Axis(0), &[1, 2, 0])
.select(Axis(1), &[1, 2, 0])
}
} else if self.is_spatial_inversion() {
-Array2::<f64>::eye(3)
} else {
// Pole and pole angle are obtained in the inversion-centre convention.
let angle = self.calc_pole_angle();
let axis = self.calc_pole().coords;
let mat = improper_rotation_matrix(angle, &axis, 1, &IMINV);
// nalgebra matrix iter is column-major.
Array2::<f64>::from_shape_vec(
(3, 3).f(),
mat.iter().copied().collect::<Vec<_>>(),
)
.unwrap_or_else(
|_| panic!(
"Unable to construct a three-dimensional improper rotation matrix for angle {angle} and axis {axis}."
)
)
.select(Axis(0), &[1, 2, 0])
.select(Axis(1), &[1, 2, 0])
}
}
/// Convert the proper rotation of the current operation to one in hopotopy class 0 of
/// $`\mathsf{SU}(2)`$.
///
/// # Returns
///
/// A symmetry element in $`\mathsf{SU}(2)`$.
pub fn to_su2_class_0(&self) -> Self {
let q_identity = Self::from_quaternion(
(-1.0, -Vector3::z()),
true,
self.generating_element.threshold(),
1,
false,
true,
None,
);
if self.is_su2() {
if self.is_su2_class_1() {
self * q_identity
} else {
self.clone()
}
} else {
let mut op = self.clone();
op.generating_element.rotation_group = SU2_0;
if op.is_su2_class_1() {
let mut q_op = op * q_identity;
if !q_op.is_proper() {
q_op = q_op.convert_to_improper_kind(&SIG);
}
q_op
} else {
op
}
}
}
/// Sets the positive hemisphere governing this symmetry operation.
///
/// # Arguments
///
/// * `poshem` - An `Option` containing a custom positive hemisphere, if any.
pub fn set_positive_hemisphere(&mut self, poshem: Option<&PositiveHemisphere>) {
self.positive_hemisphere = poshem.cloned();
}
}
// =====================
// Trait implementations
// =====================
impl FiniteOrder for SymmetryOperation {
type Int = u32;
/// Calculates the order of this symmetry operation.
fn order(&self) -> Self::Int {
let denom = *self
.total_proper_fraction
.expect("No total proper fractions found.")
.denom()
.expect("Unable to extract the denominator.");
let spatial_order =
if (self.is_proper() && !self.contains_time_reversal()) || denom.rem_euclid(2) == 0 {
denom
} else {
2 * denom
};
if self.is_su2() {
2 * spatial_order
} else {
spatial_order
}
}
}
impl SpecialSymmetryTransformation for SymmetryOperation {
// ============
// Spatial part
// ============
/// Checks if the spatial part of the symmetry operation is proper.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is proper.
fn is_proper(&self) -> bool {
let au = self.generating_element.contains_antiunitary();
self.generating_element.is_o3_proper(au) || self.power.rem_euclid(2) == 0
}
/// Checks if the spatial part of the symmetry operation is the spatial identity.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is the spatial identity.
fn is_spatial_identity(&self) -> bool {
self.is_proper()
&& match *self.generating_element.raw_proper_order() {
ElementOrder::Int(_) => self
.total_proper_fraction
.expect("Total proper fraction not found for a finite-order operation.")
.is_zero(),
ElementOrder::Inf => approx::abs_diff_eq!(
self.total_proper_angle,
0.0,
epsilon = self.generating_element.threshold
),
}
}
/// Checks if the spatial part of the symmetry operation is a spatial binary rotation.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is a spatial binary
/// rotation.
fn is_spatial_binary_rotation(&self) -> bool {
self.is_proper()
&& match *self.generating_element.raw_proper_order() {
ElementOrder::Int(_) => {
self.total_proper_fraction
.expect("Total proper fraction not found for a finite-order operation.")
== F::new(1u32, 2u32)
}
ElementOrder::Inf => {
approx::abs_diff_eq!(
self.total_proper_angle,
std::f64::consts::PI,
epsilon = self.generating_element.threshold
)
}
}
}
/// Checks if the spatial part of the symmetry operation is the spatial inversion.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is the spatial inversion.
fn is_spatial_inversion(&self) -> bool {
!self.is_proper()
&& match self.generating_element.kind {
SymmetryElementKind::ImproperMirrorPlane(_) => {
if let ElementOrder::Int(_) = *self.generating_element.raw_proper_order() {
self.total_proper_fraction
.expect("Total proper fraction not found for a finite-order operation.")
== F::new(1u32, 2u32)
} else {
approx::abs_diff_eq!(
self.total_proper_angle,
std::f64::consts::PI,
epsilon = self.generating_element.threshold
)
}
}
SymmetryElementKind::ImproperInversionCentre(_) => {
if let ElementOrder::Int(_) = *self.generating_element.raw_proper_order() {
self.total_proper_fraction
.expect("Total proper fraction not found for a finite-order operation.")
.is_zero()
} else {
approx::abs_diff_eq!(
self.total_proper_angle,
0.0,
epsilon = self.generating_element.threshold
)
}
}
_ => false,
}
}
/// Checks if the spatial part of the symmetry operation is a spatial reflection.
///
/// # Returns
///
/// A boolean indicating if the spatial part of the symmetry operation is a spatial reflection.
fn is_spatial_reflection(&self) -> bool {
!self.is_proper()
&& match self.generating_element.kind {
SymmetryElementKind::ImproperMirrorPlane(_) => {
if let ElementOrder::Int(_) = *self.generating_element.raw_proper_order() {
self.total_proper_fraction
.expect("Total proper fraction not found for a finite-order operation.")
.is_zero()
} else {
approx::abs_diff_eq!(
self.total_proper_angle,
0.0,
epsilon = self.generating_element.threshold
)
}
}
SymmetryElementKind::ImproperInversionCentre(_) => {
if let ElementOrder::Int(_) = self.generating_element.raw_proper_order() {
self.total_proper_fraction
.expect("Total proper fraction not found for a finite-order operation.")
== F::new(1u32, 2u32)
} else {
approx::abs_diff_eq!(
self.total_proper_angle,
std::f64::consts::PI,
epsilon = self.generating_element.threshold
)
}
}
_ => false,
}
}
// ==================
// Time-reversal part
// ==================
/// Checks if the symmetry operation is antiunitary or not.
///
/// # Returns
///
/// A boolean indicating if the symmetry oppperation is antiunitary.
fn contains_time_reversal(&self) -> bool {
self.generating_element.contains_time_reversal() && self.power.rem_euclid(2) == 1
}
// ==================
// Spin rotation part
// ==================
/// Checks if the proper rotation part of the symmetry operation is in $`\mathsf{SU}(2)`$.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation contains an $`\mathsf{SU}(2)`$ proper
/// rotation.
fn is_su2(&self) -> bool {
self.generating_element.rotation_group.is_su2()
}
/// Checks if the proper rotation part of the symmetry operation is in $`\mathsf{SU}(2)`$ and
/// connected to the identity via a homotopy path of class 1.
///
/// # Returns
///
/// A boolean indicating if this symmetry operation contains an $`\mathsf{SU}(2)`$ proper
/// rotation connected to the identity via a homotopy path of class 1.
fn is_su2_class_1(&self) -> bool {
if self.is_su2() {
// The following is wrong, because `self.is_proper()` takes into account the power applied
// to the spatial part, but not yet to the spin rotation part. Then, for example,
// [QΣ·S3(+0.816, -0.408, +0.408)]^2 would become Σ'·[C3(+0.816, -0.408, +0.408)]^2 where
// Σ' is the associated spin rotation of [C3(+0.816, -0.408, +0.408)]^2, which is not the
// same as Σ^2.
// let c_self = if self.is_proper() {
// self.clone()
// } else {
// self.convert_to_improper_kind(&INV)
// };
//
// The following is correct.
let c_self = match self.generating_element.kind {
SymmetryElementKind::Proper(_)
| SymmetryElementKind::ImproperInversionCentre(_) => self.clone(),
SymmetryElementKind::ImproperMirrorPlane(au) => {
self.convert_to_improper_kind(&SymmetryElementKind::ImproperInversionCentre(au))
}
};
let generating_element_au = c_self.generating_element.contains_antiunitary();
let spatial_proper_identity = c_self
.generating_element
.is_o3_identity(generating_element_au)
|| c_self
.generating_element
.is_o3_inversion_centre(generating_element_au);
let inverse_from_time_reversal =
if self.is_su2() && generating_element_au == Some(AntiunitaryKind::TimeReversal) {
self.power.rem_euclid(4) == 2 || self.power.rem_euclid(4) == 3
} else {
false
};
let inverse_from_rotation_group = if spatial_proper_identity {
// The proper part of the generating element is the identity. In this case, no
// matter the value of proper power, the result is always the identity.
false
} else {
let thresh = c_self.generating_element.threshold;
let odd_jumps_from_angle = c_self
.generating_element
.proper_fraction
.map(|frac| {
let pow = c_self.power;
let total_unormalised_proper_fraction = frac * F::from(pow);
let (_, x) = geometry::normalise_rotation_fraction(
total_unormalised_proper_fraction,
);
x.rem_euclid(2) == 1
})
.unwrap_or_else(|| {
let total_unormalised_proper_angle = c_self
.generating_element
.proper_angle
.expect("Proper angle of generating element not found.")
* f64::from(c_self.power);
let (_, x) = geometry::normalise_rotation_angle(
total_unormalised_proper_angle,
thresh,
);
x.rem_euclid(2) == 1
});
let single_jump_from_c2 = (c_self.is_spatial_binary_rotation()
|| c_self.is_spatial_reflection())
&& !self
.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.check_positive_pole(c_self.generating_element.raw_axis(), thresh);
odd_jumps_from_angle != single_jump_from_c2
};
let intrinsic_inverse = c_self.generating_element.rotation_group().is_su2_class_1()
&& c_self.power.rem_euclid(2) == 1;
let inverse_count = [
inverse_from_time_reversal,
inverse_from_rotation_group,
intrinsic_inverse,
]
.into_iter()
.filter(|&inverse| inverse)
.count();
inverse_count.rem_euclid(2) == 1
} else {
false
}
}
}
impl fmt::Debug for SymmetryOperation {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.power == 1 {
write!(f, "{:?}", self.generating_element)
} else if self.power >= 0 {
write!(f, "[{:?}]^{}", self.generating_element, self.power)
} else {
write!(f, "[{:?}]^({})", self.generating_element, self.power)
}
}
}
impl fmt::Display for SymmetryOperation {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.power == 1 {
write!(f, "{}", self.generating_element)
} else if self.power >= 0 {
write!(f, "[{}]^{}", self.generating_element, self.power)
} else {
write!(f, "[{}]^({})", self.generating_element, self.power)
}
}
}
impl PartialEq for SymmetryOperation {
fn eq(&self, other: &Self) -> bool {
if (*self.generating_element.raw_proper_order() == ElementOrder::Inf)
!= (*other.generating_element.raw_proper_order() == ElementOrder::Inf)
{
// We disable comparisons between operations with infinite-order and
// finite-order generating elements, because they cannot be made to
// have the same hashes without losing the fidelity of exact-fraction
// representations for operations with finite-order generating elements.
return false;
}
// =================
// Group-theoretical
// =================
if self.is_su2() != other.is_su2() {
return false;
}
if self.is_su2_class_1() != other.is_su2_class_1() {
return false;
}
// ==========================
// Special general operations
// ==========================
if self.is_proper() != other.is_proper() {
return false;
}
if self.contains_time_reversal() != other.contains_time_reversal() {
return false;
}
// ===========================
// Special specific operations
// ===========================
// At this stage, `self` and `other` must have the same spatial parity, unitarity, and
// SO3/SU2 properties.
if self.is_spatial_identity() && other.is_spatial_identity() {
// assert_eq!(misc::calculate_hash(self), misc::calculate_hash(other));
// return true;
return misc::calculate_hash(self) == misc::calculate_hash(other);
}
// ======
// Others
// ======
let thresh =
(self.generating_element.threshold * other.generating_element.threshold).sqrt();
let result = if (self.is_spatial_binary_rotation() && other.is_spatial_binary_rotation())
|| (self.is_spatial_reflection() && other.is_spatial_reflection())
{
approx::relative_eq!(
self.calc_pole(),
other.calc_pole(),
epsilon = thresh,
max_relative = thresh
)
} else {
let c_self = if self.is_proper() {
self.clone()
} else {
// Time-reversal does not matter here.
self.convert_to_improper_kind(&INV)
};
let c_other = if other.is_proper() {
other.clone()
} else {
// Time-reversal does not matter here.
other.convert_to_improper_kind(&INV)
};
let angle_comparison = if let (Some(s_frac), Some(o_frac)) =
(c_self.total_proper_fraction, c_other.total_proper_fraction)
{
s_frac.abs() == o_frac.abs()
} else {
approx::relative_eq!(
c_self.total_proper_angle.abs(),
c_other.total_proper_angle.abs(),
epsilon = thresh,
max_relative = thresh
)
};
angle_comparison
&& approx::relative_eq!(
self.calc_pole(),
other.calc_pole(),
epsilon = thresh,
max_relative = thresh
)
};
// if result {
// assert_eq!(
// misc::calculate_hash(self),
// misc::calculate_hash(other),
// "`{self}` and `{other}` have unequal hashes.",
// );
// }
result && (misc::calculate_hash(self) == misc::calculate_hash(other))
}
}
impl Eq for SymmetryOperation {}
impl Hash for SymmetryOperation {
fn hash<H: Hasher>(&self, state: &mut H) {
let c_self = match self.generating_element.kind {
SymmetryElementKind::Proper(_) | SymmetryElementKind::ImproperInversionCentre(_) => {
self.clone()
}
SymmetryElementKind::ImproperMirrorPlane(_) => self.convert_to_improper_kind(&INV),
};
// ==========================
// Special general operations
// ==========================
c_self.is_proper().hash(state);
c_self.contains_time_reversal().hash(state);
c_self.is_su2().hash(state);
c_self.is_su2_class_1().hash(state);
// ===========================
// Special specific operations
// ===========================
if c_self.is_spatial_identity() {
true.hash(state);
} else {
let pole = c_self.calc_pole();
pole[0]
.round_factor(c_self.generating_element.threshold)
.integer_decode()
.hash(state);
pole[1]
.round_factor(c_self.generating_element.threshold)
.integer_decode()
.hash(state);
pole[2]
.round_factor(c_self.generating_element.threshold)
.integer_decode()
.hash(state);
if !c_self.is_spatial_binary_rotation() && !c_self.is_spatial_reflection() {
if let Some(frac) = c_self.total_proper_fraction {
// self.total_proper_fraction lies in (-1/2, 0) ∪ (0, 1/2).
// 0 and 1/2 are excluded because this is not an identity,
// inversion, binary rotation, or reflection.
frac.abs().hash(state);
} else {
// self.total_proper_angle lies in (-π, 0) ∪ (0, π).
// 0 and π are excluded because this is not an identity,
// inversion, binary rotation, or reflection.
let abs_ang = c_self.total_proper_angle.abs();
abs_ang
.round_factor(c_self.generating_element.threshold)
.integer_decode()
.hash(state);
};
}
};
}
}
impl Mul<&'_ SymmetryOperation> for &SymmetryOperation {
type Output = SymmetryOperation;
fn mul(self, rhs: &SymmetryOperation) -> Self::Output {
assert_eq!(
self.is_su2(),
rhs.is_su2(),
"`self` and `rhs` must both have or not have associated spin rotations."
);
assert_eq!(self.positive_hemisphere, rhs.positive_hemisphere);
let su2 = self.is_su2();
let (q1_s, q1_v) = self.calc_quaternion();
let (q2_s, q2_v) = rhs.calc_quaternion();
let q3_s = q1_s * q2_s - q1_v.dot(&q2_v);
let q3_v = q1_s * q2_v + q2_s * q1_v + q1_v.cross(&q2_v);
// Is the resulting operation proper?
let proper = self.is_proper() == rhs.is_proper();
// Does the resulting operation contain a time reversal?
let tr = self.contains_time_reversal() != rhs.contains_time_reversal();
// Does the resulting operation pick up a quaternion sign change due to θ^2?
let tr2 = self.contains_time_reversal() && rhs.contains_time_reversal();
let thresh = (self.generating_element.threshold * rhs.generating_element.threshold).sqrt();
let max_trial_power = u32::MAX;
let q3 = if su2 {
if tr2 {
(-q3_s, -q3_v)
} else {
(q3_s, q3_v)
}
} else if q3_s >= 0.0 {
(q3_s, q3_v)
} else {
(-q3_s, -q3_v)
};
SymmetryOperation::from_quaternion(
q3,
proper,
thresh,
max_trial_power,
tr,
su2,
self.positive_hemisphere.clone(),
)
}
}
impl Mul<&'_ SymmetryOperation> for SymmetryOperation {
type Output = SymmetryOperation;
fn mul(self, rhs: &SymmetryOperation) -> Self::Output {
&self * rhs
}
}
impl Mul<SymmetryOperation> for SymmetryOperation {
type Output = SymmetryOperation;
fn mul(self, rhs: SymmetryOperation) -> Self::Output {
&self * &rhs
}
}
impl Mul<SymmetryOperation> for &SymmetryOperation {
type Output = SymmetryOperation;
fn mul(self, rhs: SymmetryOperation) -> Self::Output {
self * &rhs
}
}
impl Pow<i32> for &SymmetryOperation {
type Output = SymmetryOperation;
fn pow(self, rhs: i32) -> Self::Output {
SymmetryOperation::builder()
.generating_element(self.generating_element.clone())
.power(self.power * rhs)
.positive_hemisphere(self.positive_hemisphere.clone())
.build()
.expect("Unable to construct a symmetry operation.")
}
}
impl Pow<i32> for SymmetryOperation {
type Output = SymmetryOperation;
fn pow(self, rhs: i32) -> Self::Output {
(&self).pow(rhs)
}
}
impl Inv for &SymmetryOperation {
type Output = SymmetryOperation;
fn inv(self) -> Self::Output {
SymmetryOperation::builder()
.generating_element(self.generating_element.clone())
.power(-self.power)
.positive_hemisphere(self.positive_hemisphere.clone())
.build()
.expect("Unable to construct an inverse symmetry operation.")
}
}
impl Inv for SymmetryOperation {
type Output = SymmetryOperation;
fn inv(self) -> Self::Output {
(&self).inv()
}
}
impl<M> IntoPermutation<M> for SymmetryOperation
where
M: Transform + PermutableCollection<Rank = usize>,
{
fn act_permute(&self, rhs: &M) -> Option<Permutation<usize>> {
let angle = self.calc_pole_angle();
let axis = self.calc_pole().coords;
let mut t_mol = if self.is_proper() {
rhs.rotate(angle, &axis)
} else {
rhs.improper_rotate(angle, &axis, &IMINV)
};
if self.contains_time_reversal() {
t_mol.reverse_time_mut();
}
rhs.get_perm_of(&t_mol)
}
}
// =================
// Utility functions
// =================
/// Sorts symmetry operations in-place based on:
///
/// * whether they are unitary or antiunitary
/// * whether they are proper or improper
/// * whether they are the identity or inversion
/// * whether they are a spatial binary rotation or spatial reflection
/// * their orders
/// * their powers
/// * their closeness to Cartesian axes
/// * the axes of closest inclination
/// * whether they are of homotopy class 1 in $`\mathsf{SU}'(2)`$.
///
/// # Arguments
///
/// * `operations` - A mutable reference to a vector of symmetry operations.
pub(crate) fn sort_operations(operations: &mut [SymmetryOperation]) {
operations.sort_by_key(|op| {
let (axis_closeness, closest_axis) = op.generating_element.closeness_to_cartesian_axes();
let c_op = if op.is_proper()
|| op.generating_element.kind == SIG
|| op.generating_element.kind == TRSIG
{
op.clone()
} else if op.contains_time_reversal() {
op.convert_to_improper_kind(&TRSIG)
} else {
op.convert_to_improper_kind(&SIG)
};
let total_proper_fraction = c_op
.total_proper_fraction
.expect("No total proper fractions found.");
let denom = i64::try_from(
*total_proper_fraction
.denom()
.expect("The denominator of the total proper fraction cannot be extracted."),
)
.unwrap_or_else(|_| {
panic!("Unable to convert the denominator of `{total_proper_fraction:?}` to `i64`.")
});
let numer = i64::try_from(
*total_proper_fraction
.numer()
.expect("The numerator of the total proper fraction cannot be extracted."),
)
.unwrap_or_else(|_| {
panic!("Unable to convert the numerator of `{total_proper_fraction:?}` to `i64`.")
});
let negative_rotation = !c_op
.positive_hemisphere
.as_ref()
.cloned()
.unwrap_or_default()
.check_positive_pole(
&c_op.calc_proper_rotation_pole().coords,
c_op.generating_element.threshold(),
);
(
c_op.contains_time_reversal(),
!c_op.is_proper(),
!(c_op.is_spatial_identity() || c_op.is_spatial_inversion()),
c_op.is_spatial_binary_rotation() || c_op.is_spatial_reflection(),
-denom,
negative_rotation,
if negative_rotation { -numer } else { numer },
OrderedFloat(axis_closeness),
closest_axis,
c_op.is_su2_class_1(),
)
});
}