1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
//! Transformations under symmetry operations.

use std::error::Error;
use std::fmt;

use nalgebra::Vector3;
use ndarray::{Array, Array2, Axis, RemoveAxis};
use num_complex::Complex;
#[cfg(feature = "python")]
use pyo3::prelude::*;
use serde::{Deserialize, Serialize};

use crate::angmom::sh_conversion::{sh_cart2r, sh_r2cart};
use crate::angmom::sh_rotation_3d::rlmat;
use crate::angmom::spinor_rotation_3d::dmat_angleaxis;
use crate::basis::ao::{BasisAngularOrder, CartOrder, PureOrder, ShellOrder};
use crate::permutation::{PermutableCollection, Permutation};
use crate::symmetry::symmetry_element::symmetry_operation::{
    SpecialSymmetryTransformation, SymmetryOperation,
};

#[cfg(test)]
#[path = "symmetry_transformation_tests.rs"]
mod symmetry_transformation_tests;

// ================
// Enum definitions
// ================

/// Enumerated type for managing the kind of symmetry transformation on an object.
#[derive(Debug, Clone, Serialize, Deserialize)]
#[cfg_attr(feature = "python", pyclass)]
pub enum SymmetryTransformationKind {
    /// Spatial-only transformation.
    Spatial,

    /// Spatial-only transformation but with spin-including time reversal.
    SpatialWithSpinTimeReversal,

    /// Spin-only transformation.
    Spin,

    /// Spin-spatial coupled transformation.
    SpinSpatial,
}

impl Default for SymmetryTransformationKind {
    fn default() -> Self {
        SymmetryTransformationKind::Spatial
    }
}

impl fmt::Display for SymmetryTransformationKind {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::Spatial => write!(f, "Spatial-only transformation"),
            Self::SpatialWithSpinTimeReversal => write!(
                f,
                "Spatial-only transformation but with spin-including time reversal"
            ),
            Self::Spin => write!(f, "Spin-only transformation"),
            Self::SpinSpatial => write!(f, "Spin-spatial coupled transformation"),
        }
    }
}

// =================
// Trait definitions
// =================

#[derive(Debug, Clone)]
pub struct TransformationError(pub String);

impl fmt::Display for TransformationError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Transformation error: {}", self.0)
    }
}

impl Error for TransformationError {}

/// Trait for spatial unitary transformation. A spatial unitary transformation also permutes
/// off-origin sites.
pub trait SpatialUnitaryTransformable: Clone {
    // ----------------
    // Required methods
    // ----------------
    /// Performs a spatial transformation in-place.
    ///
    /// # Arguments
    ///
    /// * `rmat` - The three-dimensional representation matrix of the transformation in the basis
    /// of coordinate *functions* $`(y, z, x)`$.
    /// * `perm` - An optional permutation describing how any off-origin sites are permuted amongst
    /// each other under the transformation.
    fn transform_spatial_mut(
        &mut self,
        rmat: &Array2<f64>,
        perm: Option<&Permutation<usize>>,
    ) -> Result<&mut Self, TransformationError>;

    // ----------------
    // Provided methods
    // ----------------
    /// Performs a spatial transformation and returns the transformed result.
    ///
    /// # Arguments
    ///
    /// * `rmat` - The three-dimensional representation matrix of the transformation in the basis
    /// of coordinate *functions* $`(y, z, x)`$.
    ///
    /// # Returns
    ///
    /// The transformed result.
    fn transform_spatial(
        &self,
        rmat: &Array2<f64>,
        perm: Option<&Permutation<usize>>,
    ) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.transform_spatial_mut(rmat, perm)?;
        Ok(tself)
    }
}

/// Trait for spin unitary transformations. A spin unitary transformation has no spatial effects.
pub trait SpinUnitaryTransformable: Clone {
    // ----------------
    // Required methods
    // ----------------
    /// Performs a spin transformation in-place.
    ///
    /// # Arguments
    ///
    /// * `dmat` - The two-dimensional representation matrix of the transformation in the basis of
    /// the $`\{ \alpha, \beta \}`$ spinors (*i.e.* decreasing $`m`$ order).
    fn transform_spin_mut(
        &mut self,
        dmat: &Array2<Complex<f64>>,
    ) -> Result<&mut Self, TransformationError>;

    // ----------------
    // Provided methods
    // ----------------
    /// Performs a spin transformation and returns the transformed result.
    ///
    /// # Arguments
    ///
    /// * `dmat` - The two-dimensional representation matrix of the transformation in the basis of
    /// the $`\{ \alpha, \beta \}`$ spinors (*i.e.* decreasing $`m`$ order).
    ///
    /// # Returns
    ///
    /// The transformed result.
    fn transform_spin(&self, dmat: &Array2<Complex<f64>>) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.transform_spin_mut(dmat)?;
        Ok(tself)
    }
}

/// Trait for complex-conjugation transformations.
pub trait ComplexConjugationTransformable: Clone {
    // ----------------
    // Required methods
    // ----------------
    /// Performs a complex conjugation in-place.
    fn transform_cc_mut(&mut self) -> Result<&mut Self, TransformationError>;

    // ----------------
    // Provided methods
    // ----------------
    /// Performs a complex conjugation and returns the complex-conjugated result.
    ///
    /// # Returns
    ///
    /// The complex-conjugated result.
    fn transform_cc(&self) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.transform_cc_mut()?;
        Ok(tself)
    }
}

/// Trait for time-reversal transformations.
///
/// This trait has a blanket implementation for any implementor of the [`SpinUnitaryTransformable`]
/// trait and the [`ComplexConjugationTransformable`] trait together with the
/// [`DefaultTimeReversalTransformable`] marker trait.
pub trait TimeReversalTransformable: ComplexConjugationTransformable {
    // ----------------
    // Required methods
    // ----------------
    /// Performs a time-reversal transformation in-place.
    fn transform_timerev_mut(&mut self) -> Result<&mut Self, TransformationError>;

    // ----------------
    // Provided methods
    // ----------------
    /// Performs a time-reversal transformation and returns the time-reversed result.
    ///
    /// # Returns
    ///
    /// The time-reversed result.
    fn transform_timerev(&self) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.transform_timerev_mut()?;
        Ok(tself)
    }
}

// ----------------------
// Blanket implementation
// ----------------------

/// Marker trait indicating that the implementing type should get the blanket implementation for
/// [`TimeReversalTransformable`].
pub trait DefaultTimeReversalTransformable {}

impl<T> TimeReversalTransformable for T
where
    T: DefaultTimeReversalTransformable
        + SpinUnitaryTransformable
        + ComplexConjugationTransformable,
{
    /// Performs a time-reversal transformation in-place.
    ///
    /// The default implementation of the time-reversal transformation for any type that implements
    /// [`SpinUnitaryTransformable`] and [`ComplexConjugationTransformable`] is a spin rotation by
    /// $`\pi`$ about the space-fixed $`y`$-axis followed by a complex conjugation.
    fn transform_timerev_mut(&mut self) -> Result<&mut Self, TransformationError> {
        let dmat_y = dmat_angleaxis(std::f64::consts::PI, Vector3::y(), false);
        self.transform_spin_mut(&dmat_y)?.transform_cc_mut()
    }
}

/// Trait for transformations using [`SymmetryOperation`].
pub trait SymmetryTransformable:
    SpatialUnitaryTransformable + SpinUnitaryTransformable + TimeReversalTransformable
{
    // ----------------
    // Required methods
    // ----------------
    /// Determines the permutation of sites (*e.g.* atoms in molecules) due to the action of a
    /// symmetry operation.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    ///
    /// # Returns
    ///
    /// The resultant site permutation under the action of `symop`, or an error if no such
    /// permutation can be found.
    fn sym_permute_sites_spatial(
        &self,
        symop: &SymmetryOperation,
    ) -> Result<Permutation<usize>, TransformationError>;

    // ----------------
    // Provided methods
    // ----------------
    /// Performs a spatial transformation according to a specified symmetry operation in-place.
    ///
    /// Note that both $`\mathsf{SO}(3)`$ and $`\mathsf{SU}(2)`$ rotations effect the same spatial
    /// transformation. Also note that, if the transformation contains time reversal, it will be
    /// accompanied by a complex conjugation.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    fn sym_transform_spatial_mut(
        &mut self,
        symop: &SymmetryOperation,
    ) -> Result<&mut Self, TransformationError> {
        let rmat = symop.get_3d_spatial_matrix();
        let perm = self.sym_permute_sites_spatial(symop)?;
        self.transform_spatial_mut(&rmat, Some(&perm))
            .map_err(|err| TransformationError(err.to_string()))?;
        if symop.contains_time_reversal() {
            self.transform_cc_mut()
        } else {
            Ok(self)
        }
    }

    /// Performs a spatial transformation according to a specified symmetry operation and returns
    /// the transformed result.
    ///
    /// Note that both $`\mathsf{SO}(3)`$ and $`\mathsf{SU}(2)`$ rotations effect the same spatial
    /// transformation. Also note that, if the transformation contains time reversal, it will be
    /// accompanied by a complex conjugation.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    ///
    /// # Returns
    ///
    /// The transformed result.
    fn sym_transform_spatial(
        &self,
        symop: &SymmetryOperation,
    ) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.sym_transform_spatial_mut(symop)?;
        Ok(tself)
    }

    /// Performs a spatial transformation according to a specified symmetry operation in-place, but
    /// with spin-including time reversal.
    ///
    /// Note that both $`\mathsf{SO}(3)`$ and $`\mathsf{SU}(2)`$ rotations effect the same spatial
    /// transformation. Also note that, if the transformation contains time reversal, it will be
    /// accompanied by a rotation by $`\pi`$ about the space-fixed $`y`$-axis followed by a complex
    /// conjugation.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    fn sym_transform_spatial_with_spintimerev_mut(
        &mut self,
        symop: &SymmetryOperation,
    ) -> Result<&mut Self, TransformationError> {
        let rmat = symop.get_3d_spatial_matrix();
        let perm = self.sym_permute_sites_spatial(symop)?;
        self.transform_spatial_mut(&rmat, Some(&perm))
            .map_err(|err| TransformationError(err.to_string()))?;
        if symop.contains_time_reversal() {
            self.transform_timerev_mut()?;
        }
        Ok(self)
    }

    /// Performs a spatial transformation according to a specified symmetry operation but with
    /// spin-including time reversal and returns the transformed result.
    ///
    /// Note that both $`\mathsf{SO}(3)`$ and $`\mathsf{SU}(2)`$ rotations effect the same spatial
    /// transformation. Also note that, if the transformation contains time reversal, it will be
    /// accompanied by a rotation by $`\pi`$ about the space-fixed $`y`$-axis followed by a complex
    /// conjugation.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    ///
    /// # Returns
    ///
    /// The transformed result.
    fn sym_transform_spatial_with_spintimerev(
        &self,
        symop: &SymmetryOperation,
    ) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.sym_transform_spatial_with_spintimerev_mut(symop)?;
        Ok(tself)
    }

    /// Performs a spin transformation according to a specified symmetry operation in-place.
    ///
    /// Note that only $`\mathsf{SU}(2)`$ rotations can effect spin transformations. Also note
    /// that, if the transformation contains a time reversal, the corresponding explicit time
    /// reveral action will also be carried out.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    fn sym_transform_spin_mut(
        &mut self,
        symop: &SymmetryOperation,
    ) -> Result<&mut Self, TransformationError> {
        if symop.is_su2() {
            let angle = symop.calc_pole_angle();
            let axis = symop.calc_pole().coords;
            let dmat = if symop.is_su2_class_1() {
                -dmat_angleaxis(angle, axis, false)
            } else {
                dmat_angleaxis(angle, axis, false)
            };
            self.transform_spin_mut(&dmat)?;
        }
        if symop.contains_time_reversal() {
            self.transform_timerev_mut()?;
        }
        Ok(self)
    }

    /// Performs a spin transformation according to a specified symmetry operation and returns the
    /// transformed result.
    ///
    /// Note that only $`\mathsf{SU}(2)`$ rotations can effect spin transformations. Also note
    /// that, if the transformation is antiunitary, it will be accompanied by a time reversal.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    ///
    /// # Returns
    ///
    /// The transformed result.
    fn sym_transform_spin(&self, symop: &SymmetryOperation) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.sym_transform_spin_mut(symop)?;
        Ok(tself)
    }

    /// Performs a coupled spin-spatial transformation according to a specified symmetry operation
    /// in-place.
    ///
    /// Note that only $`\mathsf{SU}(2)`$ rotations can effect spin transformations.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    fn sym_transform_spin_spatial_mut(
        &mut self,
        symop: &SymmetryOperation,
    ) -> Result<&mut Self, TransformationError> {
        // We cannot do the following, because each of the two methods carries out its own
        // antiunitary action, so we'd be double-acting the antiunitary action.
        // self.sym_transform_spatial_mut(symop)?
        //     .sym_transform_spin_mut(symop)

        // Spatial
        let rmat = symop.get_3d_spatial_matrix();
        let perm = self.sym_permute_sites_spatial(symop)?;
        self.transform_spatial_mut(&rmat, Some(&perm))
            .map_err(|err| TransformationError(err.to_string()))?;

        // Spin -- only SU(2) rotations can effect spin transformations.
        if symop.is_su2() {
            let angle = symop.calc_pole_angle();
            let axis = symop.calc_pole().coords;
            let dmat = if symop.is_su2_class_1() {
                -dmat_angleaxis(angle, axis, false)
            } else {
                dmat_angleaxis(angle, axis, false)
            };
            self.transform_spin_mut(&dmat)?;
        }

        // Time reversal, if any.
        if symop.contains_time_reversal() {
            self.transform_timerev_mut()?;
        }
        Ok(self)
    }

    /// Performs a coupled spin-spatial transformation according to a specified symmetry operation
    /// and returns the transformed result.
    ///
    /// Note that only $`\mathsf{SU}(2)`$ rotations can effect spin transformations.
    ///
    /// # Arguments
    ///
    /// * `symop` - A symmetry operation.
    ///
    /// # Returns
    ///
    /// The transformed result.
    fn sym_transform_spin_spatial(
        &self,
        symop: &SymmetryOperation,
    ) -> Result<Self, TransformationError> {
        let mut tself = self.clone();
        tself.sym_transform_spin_spatial_mut(symop)?;
        Ok(tself)
    }
}

// =========
// Functions
// =========

/// Permutes the generalised rows of an array along one or more dimensions.
///
/// Each generalised row corresponds to a basis function, and consecutive generalised rows
/// corresponding to basis functions localised on a single atom are grouped together and then
/// permuted according to the permutation of the atoms.
///
/// # Arguments
///
/// * `arr` - A coefficient array of any dimensions.
/// * `atom_perm` - A permutation for the atoms.
/// * `axes` - The dimensions along which the generalised rows are to be permuted. The number of
/// generalised rows along each of these dimensions *must* be equal to the number of functions in
/// the basis.
/// * `bao` - A structure specifying the angular order of the underlying basis.
///
/// # Returns
///
/// The permuted array.
///
/// # Panics
///
/// Panics if the number of generalised rows along any of the dimensions in `axes` does not match
/// the number of functions in the basis, or if the permutation rank does not match the number of
/// atoms in the basis.
pub(crate) fn permute_array_by_atoms<T, D>(
    arr: &Array<T, D>,
    atom_perm: &Permutation<usize>,
    axes: &[Axis],
    bao: &BasisAngularOrder,
) -> Array<T, D>
where
    D: RemoveAxis,
    T: Clone,
{
    assert_eq!(
        atom_perm.rank(),
        bao.n_atoms(),
        "The rank of permutation does not match the number of atoms in the basis."
    );
    let atom_boundary_indices = bao.atom_boundary_indices();
    let permuted_shell_indices: Vec<usize> = atom_perm
        .image()
        .iter()
        .flat_map(|&i| {
            let (shell_min, shell_max) = atom_boundary_indices[i];
            shell_min..shell_max
        })
        .collect();

    let mut r = arr.clone();
    for axis in axes {
        assert_eq!(
            arr.shape()[axis.0],
            bao.n_funcs(),
            "The number of generalised rows along {axis:?} in the given array does not match the number of basis functions, {}.", bao.n_funcs()
        );
        r = r.select(*axis, &permuted_shell_indices);
    }
    r
}

/// Assembles spherical-harmonic rotation matrices for all shells.
///
/// # Arguments
///
/// * `bao` - A structure specifying the angular order of the underlying basis.
/// * `rmat` - The three-dimensional representation matrix of the transformation in the basis
/// of coordinate *functions* $`(y, z, x)`$.
/// * `perm` - An optional permutation describing how any off-origin sites are permuted amongst
/// each other under the transformation.
///
/// # Returns
///
/// A vector of spherical-harmonic rotation matrices, one for each shells in `bao`. Non-standard
/// orderings of functions in shells are taken into account.
pub(crate) fn assemble_sh_rotation_3d_matrices(
    bao: &BasisAngularOrder,
    rmat: &Array2<f64>,
    perm: Option<&Permutation<usize>>,
) -> Result<Vec<Array2<f64>>, anyhow::Error> {
    let pbao = if let Some(p) = perm {
        bao.permute(p)?
    } else {
        bao.clone()
    };
    let mut rls = vec![Array2::<f64>::eye(1), rmat.clone()];
    let lmax = pbao
        .basis_shells()
        .map(|shl| shl.l)
        .max()
        .expect("The maximum angular momentum cannot be found.");
    for l in 2..=lmax {
        let rl = rlmat(
            l,
            rmat,
            rls.last()
                .expect("The representation matrix for the last angular momentum cannot be found."),
        );
        rls.push(rl);
    }

    // All matrices in `rls` are in increasing-m order by default. See the function `rlmat` for
    // the origin of this order. Hence, conversion matrices must also honour this.
    let cart2rss_lex: Vec<Vec<Array2<f64>>> = (0..=lmax)
        .map(|lcart| sh_cart2r(lcart, &CartOrder::lex(lcart), true, PureOrder::increasingm))
        .collect();
    let r2cartss_lex: Vec<Vec<Array2<f64>>> = (0..=lmax)
        .map(|lcart| sh_r2cart(lcart, &CartOrder::lex(lcart), true, PureOrder::increasingm))
        .collect();

    let rmats = pbao.basis_shells()
        .map(|shl| {
            let l = usize::try_from(shl.l).unwrap_or_else(|_| {
                panic!(
                    "Unable to convert the angular momentum order `{}` to `usize`.",
                    shl.l
                );
            });
            let po_il = PureOrder::increasingm(shl.l);
            match &shl.shell_order {
                ShellOrder::Pure(pureorder) => {
                    // Spherical functions.
                    let rl = rls[l].clone();
                    if *pureorder != po_il {
                        // `rl` is in increasing-m order by default. See the function `rlmat` for
                        // the origin of this order.
                        let perm = pureorder
                            .get_perm_of(&po_il)
                            .expect("Unable to obtain the permutation that maps `pureorder` to the increasing order.");
                        rl.select(Axis(0), &perm.image()).select(Axis(1), &perm.image())
                    } else {
                        rl
                    }
                }
                ShellOrder::Cart(cart_order) => {
                    // Cartesian functions. Convert them to real solid harmonics first, then
                    // applying the transformation, then convert back.
                    // The actual Cartesian order will be taken into account.

                    // Perform the conversion using lexicographic order first. This allows for the
                    // conversion matrices to be computed only once in the lexicographic order.
                    let cart2rs = &cart2rss_lex[l];
                    let r2carts = &r2cartss_lex[l];
                    let rl = cart2rs.iter().zip(r2carts.iter()).enumerate().fold(
                        Array2::zeros((cart_order.ncomps(), cart_order.ncomps())),
                        |acc, (i, (xmat, wmat))| {
                            let lpure = l - 2 * i;
                            acc + wmat.dot(&rls[lpure]).dot(xmat)
                        },
                    );
                    let lex_cart_order = CartOrder::lex(shl.l);

                    // Now deal with the actual Cartesian order by permutations.
                    if *cart_order != lex_cart_order {
                        // `rl` is in lexicographic order (because of `wmat` and `xmat`) by default.
                        // Consider a transformation R and its representation matrix D in a
                        // lexicographically-ordered Cartesian basis b collected in a row vector.
                        // Then,
                        //      R b = b D.
                        // If we now permute the basis functions in b by a permutation π, then the
                        // representation matrix for R changes:
                        //      R πb = πb D(π).
                        // To relate D(π) to D, we first note the representation matrix for π, P:
                        //      πb = π b = b P,
                        // which, when acts on a left row vector, permutes its entries normally, but
                        // when acts on a right column vector, permutes its entries inversely.
                        // Then,
                        //      R πb = R b P = b P D(π) => R b = b PD(π)P^(-1).
                        // Thus,
                        //      D(π) = P^(-1)DP,
                        // i.e., to obtain D(π), we permute the rows and columns of D normally
                        // according to π.
                        let perm = lex_cart_order
                            .get_perm_of(cart_order)
                            .unwrap_or_else(
                                || panic!("Unable to find a permutation to map `{lex_cart_order}` to `{cart_order}`.")
                            );
                        rl.select(Axis(0), perm.image())
                            .select(Axis(1), perm.image())
                    } else {
                        rl
                    }
                }
            }
        })
        .collect::<Vec<Array2<f64>>>();
    Ok(rmats)
}