1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
//! Implementation of symmetry transformations for Slater determinants.

use std::ops::Mul;

use approx;
use ndarray::{array, concatenate, s, Array2, Axis, LinalgScalar, ScalarOperand};
use ndarray_linalg::types::Lapack;
use num_complex::{Complex, ComplexFloat};

use crate::angmom::spinor_rotation_3d::SpinConstraint;
use crate::permutation::{IntoPermutation, PermutableCollection, Permutation};
use crate::symmetry::symmetry_element::SymmetryOperation;
use crate::symmetry::symmetry_transformation::{
    assemble_sh_rotation_3d_matrices, permute_array_by_atoms, ComplexConjugationTransformable,
    DefaultTimeReversalTransformable, SpatialUnitaryTransformable, SpinUnitaryTransformable,
    SymmetryTransformable, TimeReversalTransformable, TransformationError,
};
use crate::target::determinant::SlaterDeterminant;

// ---------------------------
// SpatialUnitaryTransformable
// ---------------------------
impl<'a, T> SpatialUnitaryTransformable for SlaterDeterminant<'a, T>
where
    T: ComplexFloat + LinalgScalar + ScalarOperand + Copy + Lapack,
    f64: Into<T>,
{
    fn transform_spatial_mut(
        &mut self,
        rmat: &Array2<f64>,
        perm: Option<&Permutation<usize>>,
    ) -> Result<&mut Self, TransformationError> {
        let tmats: Vec<Array2<T>> = assemble_sh_rotation_3d_matrices(self.bao, rmat, perm)
            .map_err(|err| TransformationError(err.to_string()))?
            .iter()
            .map(|tmat| tmat.map(|&x| x.into()))
            .collect();
        let pbao = if let Some(p) = perm {
            self.bao
                .permute(p)
                .map_err(|err| TransformationError(err.to_string()))?
        } else {
            self.bao.clone()
        };
        let new_coefficients = self
            .coefficients
            .iter()
            .map(|old_coeff| match self.spin_constraint {
                SpinConstraint::Restricted(_) | SpinConstraint::Unrestricted(_, _) => {
                    let p_coeff = if let Some(p) = perm {
                        permute_array_by_atoms(old_coeff, p, &[Axis(0)], self.bao)
                    } else {
                        old_coeff.clone()
                    };
                    let t_p_blocks = pbao
                        .shell_boundary_indices()
                        .into_iter()
                        .zip(tmats.iter())
                        .map(|((shl_start, shl_end), tmat)| {
                            tmat.dot(&p_coeff.slice(s![shl_start..shl_end, ..]))
                        })
                        .collect::<Vec<_>>();
                    concatenate(
                        Axis(0),
                        &t_p_blocks.iter().map(|t_p_block| t_p_block.view()).collect::<Vec<_>>(),
                    )
                    .expect("Unable to concatenate the transformed rows for the various shells.")
                }
                SpinConstraint::Generalised(nspins, _) => {
                    let nspatial = self.bao.n_funcs();
                    let t_p_spin_blocks = (0..nspins).map(|ispin| {
                        // Extract spin block ispin.
                        let spin_start = usize::from(ispin) * nspatial;
                        let spin_end = (usize::from(ispin) + 1) * nspatial;
                        let spin_block = old_coeff.slice(s![spin_start..spin_end, ..]).to_owned();

                        // Permute within spin block ispin.
                        let p_spin_block = if let Some(p) = perm {
                            permute_array_by_atoms(&spin_block, p, &[Axis(0)], self.bao)
                        } else {
                            spin_block
                        };

                        // Transform within spin block ispin.
                        let t_p_blocks = pbao
                            .shell_boundary_indices()
                            .into_iter()
                            .zip(tmats.iter())
                            .map(|((shl_start, shl_end), tmat)| {
                                tmat.dot(&p_spin_block.slice(s![shl_start..shl_end, ..]))
                            })
                            .collect::<Vec<_>>();

                        // Concatenate blocks for various shells within spin block ispin.
                        concatenate(
                            Axis(0),
                            &t_p_blocks.iter().map(|t_p_block| t_p_block.view()).collect::<Vec<_>>(),
                        )
                        .expect("Unable to concatenate the transformed rows for the various shells.")
                    }).collect::<Vec<_>>();

                    // Concatenate spin blocks.
                    concatenate(
                        Axis(0),
                        &t_p_spin_blocks
                            .iter()
                            .map(|t_p_spin_block| t_p_spin_block.view())
                            .collect::<Vec<_>>(),
                    )
                    .expect("Unable to concatenate the transformed spin blocks.")
                }
            })
            .collect::<Vec<Array2<T>>>();
        self.coefficients = new_coefficients;
        Ok(self)
    }
}

// ------------------------
// SpinUnitaryTransformable
// ------------------------

// ~~~~~~~~~~~~~~~~~~~~~
// For real determinants
// ~~~~~~~~~~~~~~~~~~~~~

impl<'a> SpinUnitaryTransformable for SlaterDeterminant<'a, f64> {
    /// Performs a spin transformation in-place.
    ///
    /// # Arguments
    ///
    /// * `dmat` - The two-dimensional representation matrix of the transformation in the basis of
    /// the $`\{ \alpha, \beta \}`$ spinors (*i.e.* decreasing $`m`$ order).
    fn transform_spin_mut(
        &mut self,
        dmat: &Array2<Complex<f64>>,
    ) -> Result<&mut Self, TransformationError> {
        let cdmat = dmat.view().split_complex();
        if approx::relative_ne!(
            cdmat.im.map(|x| x.powi(2)).sum().sqrt(),
            0.0,
            epsilon = 1e-14,
            max_relative = 1e-14,
        ) {
            log::error!("Spin transformation matrix is complex-valued:\n{dmat}");
            Err(TransformationError(
                "Complex spin transformations cannot be performed with real coefficients."
                    .to_string(),
            ))
        } else {
            let rdmat = cdmat.re.to_owned();
            match self.spin_constraint {
                SpinConstraint::Restricted(_) => {
                    if approx::relative_eq!(
                        (&rdmat - Array2::<f64>::eye(2))
                            .map(|x| x.abs().powi(2))
                            .sum()
                            .sqrt(),
                        0.0,
                        epsilon = 1e-14,
                        max_relative = 1e-14,
                    ) {
                        // Identity spin rotation
                        Ok(self)
                    } else if approx::relative_eq!(
                        (&rdmat + Array2::<f64>::eye(2))
                            .map(|x| x.abs().powi(2))
                            .sum()
                            .sqrt(),
                        0.0,
                        epsilon = 1e-14,
                        max_relative = 1e-14,
                    ) {
                        // Negative identity spin rotation
                        self.coefficients
                            .iter_mut()
                            .for_each(|coeff| *coeff *= -1.0);
                        Ok(self)
                    } else {
                        log::error!("Unsupported spin transformation matrix:\n{}", &rdmat);
                        Err(TransformationError(
                            "Only the identity or negative identity spin transformations are possible with restricted spin constraint."
                                .to_string(),
                        ))
                    }
                }
                SpinConstraint::Unrestricted(nspins, increasingm) => {
                    // Only spin flip possible, so the order of the basis in which `dmat` is
                    // expressed and the order of the spin blocks do not need to match.
                    if nspins != 2 {
                        return Err(TransformationError(
                            "Only two-component spinor transformations are supported for now."
                                .to_string(),
                        ));
                    }
                    let dmat_y = array![[0.0, -1.0], [1.0, 0.0]];
                    if approx::relative_eq!(
                        (&rdmat - Array2::<f64>::eye(2))
                            .map(|x| x.abs().powi(2))
                            .sum()
                            .sqrt(),
                        0.0,
                        epsilon = 1e-14,
                        max_relative = 1e-14,
                    ) {
                        // Identity spin rotation
                        Ok(self)
                    } else if approx::relative_eq!(
                        (&rdmat + Array2::<f64>::eye(2))
                            .map(|x| x.abs().powi(2))
                            .sum()
                            .sqrt(),
                        0.0,
                        epsilon = 1e-14,
                        max_relative = 1e-14,
                    ) {
                        // Negative identity spin rotation
                        self.coefficients
                            .iter_mut()
                            .for_each(|coeff| *coeff = -coeff.clone());
                        Ok(self)
                    } else if approx::relative_eq!(
                        (&rdmat - &dmat_y).map(|x| x.abs().powi(2)).sum().sqrt(),
                        0.0,
                        epsilon = 1e-14,
                        max_relative = 1e-14,
                    ) {
                        // π-rotation about y-axis, effectively spin-flip
                        let new_coefficients = if increasingm {
                            vec![self.coefficients[1].clone(), -self.coefficients[0].clone()]
                        } else {
                            vec![-self.coefficients[1].clone(), self.coefficients[0].clone()]
                        };
                        let new_occupations =
                            vec![self.occupations[1].clone(), self.occupations[0].clone()];
                        self.coefficients = new_coefficients;
                        self.occupations = new_occupations;
                        Ok(self)
                    } else if approx::relative_eq!(
                        (&rdmat + &dmat_y).map(|x| x.abs().powi(2)).sum().sqrt(),
                        0.0,
                        epsilon = 1e-14,
                        max_relative = 1e-14,
                    ) {
                        // 3π-rotation about y-axis, effectively negative spin-flip
                        let new_coefficients = if increasingm {
                            vec![-self.coefficients[1].clone(), self.coefficients[0].clone()]
                        } else {
                            vec![self.coefficients[1].clone(), -self.coefficients[0].clone()]
                        };
                        let new_occupations =
                            vec![self.occupations[1].clone(), self.occupations[0].clone()];
                        self.coefficients = new_coefficients;
                        self.occupations = new_occupations;
                        Ok(self)
                    } else {
                        log::error!("Unsupported spin transformation matrix:\n{rdmat}");
                        Err(TransformationError(
                            "Only the identity or πy spin transformations are possible with unrestricted spin constraint."
                                .to_string(),
                        ))
                    }
                }
                SpinConstraint::Generalised(nspins, increasingm) => {
                    if nspins != 2 {
                        return Err(TransformationError(
                            "Only two-component spinor transformations are supported for now."
                                .to_string(),
                        ));
                    }

                    let nspatial = self.bao.n_funcs();
                    let new_coefficients = self
                        .coefficients
                        .iter()
                        .map(|old_coeff| {
                            if !increasingm {
                                let a_coeff = old_coeff.slice(s![0..nspatial, ..]).to_owned();
                                let b_coeff = old_coeff.slice(s![nspatial..2 * nspatial, ..]).to_owned();
                                let t_a_coeff = &a_coeff * rdmat[[0, 0]] + &b_coeff * rdmat[[0, 1]];
                                let t_b_coeff = &a_coeff * rdmat[[1, 0]] + &b_coeff * rdmat[[1, 1]];
                                concatenate(Axis(0), &[t_a_coeff.view(), t_b_coeff.view()]).expect(
                                    "Unable to concatenate the transformed rows for the various shells.",
                                )
                            } else {
                                let b_coeff = old_coeff.slice(s![0..nspatial, ..]).to_owned();
                                let a_coeff = old_coeff.slice(s![nspatial..2 * nspatial, ..]).to_owned();
                                let t_a_coeff = &a_coeff * rdmat[[0, 0]] + &b_coeff * rdmat[[0, 1]];
                                let t_b_coeff = &a_coeff * rdmat[[1, 0]] + &b_coeff * rdmat[[1, 1]];
                                concatenate(Axis(0), &[t_b_coeff.view(), t_a_coeff.view()]).expect(
                                    "Unable to concatenate the transformed rows for the various shells.",
                                )
                            }
                        })
                        .collect::<Vec<Array2<f64>>>();
                    self.coefficients = new_coefficients;
                    Ok(self)
                }
            }
        }
    }
}

// ~~~~~~~~~~~~~~~~~~~~~~~~
// For complex determinants
// ~~~~~~~~~~~~~~~~~~~~~~~~

impl<'a, T> SpinUnitaryTransformable for SlaterDeterminant<'a, Complex<T>>
where
    T: Clone,
    Complex<T>: ComplexFloat<Real = T>
        + LinalgScalar
        + ScalarOperand
        + Lapack
        + Mul<Complex<T>, Output = Complex<T>>
        + Mul<Complex<f64>, Output = Complex<T>>,
{
    /// Performs a spin transformation in-place.
    ///
    /// # Arguments
    ///
    /// * `dmat` - The two-dimensional representation matrix of the transformation in the basis of
    /// the $`\{ \alpha, \beta \}`$ spinors (*i.e.* decreasing $`m`$ order).
    ///
    /// # Panics
    ///
    /// Panics if the spin constraint is not generalised. Spin transformations can only be
    /// performed with generalised spin constraint.
    fn transform_spin_mut(
        &mut self,
        dmat: &Array2<Complex<f64>>,
    ) -> Result<&mut Self, TransformationError> {
        match self.spin_constraint {
            SpinConstraint::Restricted(_) => {
                if approx::relative_eq!(
                    (dmat - Array2::<Complex<f64>>::eye(2))
                        .map(|x| x.abs().powi(2))
                        .sum()
                        .sqrt(),
                    0.0,
                    epsilon = 1e-14,
                    max_relative = 1e-14,
                ) {
                    // Identity spin rotation
                    Ok(self)
                } else if approx::relative_eq!(
                    (dmat + Array2::<Complex<f64>>::eye(2))
                        .map(|x| x.abs().powi(2))
                        .sum()
                        .sqrt(),
                    0.0,
                    epsilon = 1e-14,
                    max_relative = 1e-14,
                ) {
                    // Negative identity spin rotation
                    self.coefficients
                        .iter_mut()
                        .for_each(|coeff| *coeff = -coeff.clone());
                    Ok(self)
                } else {
                    log::error!("Unsupported spin transformation matrix:\n{}", dmat);
                    Err(TransformationError(
                        "Only the identity or negative identity spin transformations are possible with restricted spin constraint."
                            .to_string(),
                    ))
                }
            }
            SpinConstraint::Unrestricted(nspins, increasingm) => {
                // Only spin flip possible, so the order of the basis in which `dmat` is
                // expressed and the order of the spin blocks do not need to match.
                if nspins != 2 {
                    return Err(TransformationError(
                        "Only two-component spinor transformations are supported for now."
                            .to_string(),
                    ));
                }
                let dmat_y = array![
                    [Complex::from(0.0), Complex::from(-1.0)],
                    [Complex::from(1.0), Complex::from(0.0)],
                ];
                if approx::relative_eq!(
                    (dmat - Array2::<Complex<f64>>::eye(2))
                        .map(|x| x.abs().powi(2))
                        .sum()
                        .sqrt(),
                    0.0,
                    epsilon = 1e-14,
                    max_relative = 1e-14,
                ) {
                    // Identity spin rotation
                    Ok(self)
                } else if approx::relative_eq!(
                    (dmat + Array2::<Complex<f64>>::eye(2))
                        .map(|x| x.abs().powi(2))
                        .sum()
                        .sqrt(),
                    0.0,
                    epsilon = 1e-14,
                    max_relative = 1e-14,
                ) {
                    // Negative identity spin rotation
                    self.coefficients
                        .iter_mut()
                        .for_each(|coeff| *coeff = -coeff.clone());
                    Ok(self)
                } else if approx::relative_eq!(
                    (dmat - &dmat_y).map(|x| x.abs().powi(2)).sum().sqrt(),
                    0.0,
                    epsilon = 1e-14,
                    max_relative = 1e-14,
                ) {
                    // π-rotation about y-axis, effectively spin-flip
                    let new_coefficients = if increasingm {
                        vec![self.coefficients[1].clone(), -self.coefficients[0].clone()]
                    } else {
                        vec![-self.coefficients[1].clone(), self.coefficients[0].clone()]
                    };
                    let new_occupations =
                        vec![self.occupations[1].clone(), self.occupations[0].clone()];
                    self.coefficients = new_coefficients;
                    self.occupations = new_occupations;
                    Ok(self)
                } else if approx::relative_eq!(
                    (dmat + &dmat_y).map(|x| x.abs().powi(2)).sum().sqrt(),
                    0.0,
                    epsilon = 1e-14,
                    max_relative = 1e-14,
                ) {
                    // 3π-rotation about y-axis, effectively negative spin-flip
                    let new_coefficients = if increasingm {
                        vec![-self.coefficients[1].clone(), self.coefficients[0].clone()]
                    } else {
                        vec![self.coefficients[1].clone(), -self.coefficients[0].clone()]
                    };
                    let new_occupations =
                        vec![self.occupations[1].clone(), self.occupations[0].clone()];
                    self.coefficients = new_coefficients;
                    self.occupations = new_occupations;
                    Ok(self)
                } else {
                    log::error!("Unsupported spin transformation matrix:\n{dmat}");
                    Err(TransformationError(
                        "Only the identity or πy spin transformations are possible with unrestricted spin constraint."
                            .to_string(),
                    ))
                }
            }
            SpinConstraint::Generalised(nspins, increasingm) => {
                if nspins != 2 {
                    panic!("Only two-component spinor transformations are supported for now.");
                }

                let nspatial = self.bao.n_funcs();

                let new_coefficients = self
                    .coefficients
                    .iter()
                    .map(|old_coeff| {
                        if increasingm {
                            let b_coeff = old_coeff.slice(s![0..nspatial, ..]).to_owned();
                            let a_coeff = old_coeff.slice(s![nspatial..2 * nspatial, ..]).to_owned();
                            let t_a_coeff = &a_coeff * dmat[[0, 0]] + &b_coeff * dmat[[0, 1]];
                            let t_b_coeff = &a_coeff * dmat[[1, 0]] + &b_coeff * dmat[[1, 1]];
                            concatenate(Axis(0), &[t_b_coeff.view(), t_a_coeff.view()]).expect(
                                "Unable to concatenate the transformed rows for the various shells.",
                            )
                        } else {
                            let a_coeff = old_coeff.slice(s![0..nspatial, ..]).to_owned();
                            let b_coeff = old_coeff.slice(s![nspatial..2 * nspatial, ..]).to_owned();
                            let t_a_coeff = &a_coeff * dmat[[0, 0]] + &b_coeff * dmat[[0, 1]];
                            let t_b_coeff = &a_coeff * dmat[[1, 0]] + &b_coeff * dmat[[1, 1]];
                            concatenate(Axis(0), &[t_a_coeff.view(), t_b_coeff.view()]).expect(
                                "Unable to concatenate the transformed rows for the various shells.",
                            )
                        }
                    })
                    .collect::<Vec<Array2<Complex<T>>>>();
                self.coefficients = new_coefficients;
                Ok(self)
            }
        }
    }
}

// -------------------------------
// ComplexConjugationTransformable
// -------------------------------

impl<'a, T> ComplexConjugationTransformable for SlaterDeterminant<'a, T>
where
    T: ComplexFloat + Lapack,
{
    /// Performs a complex conjugation in-place.
    fn transform_cc_mut(&mut self) -> Result<&mut Self, TransformationError> {
        self.coefficients
            .iter_mut()
            .for_each(|coeff| coeff.mapv_inplace(|x| x.conj()));
        self.complex_conjugated = !self.complex_conjugated;
        Ok(self)
    }
}

// --------------------------------
// DefaultTimeReversalTransformable
// --------------------------------
impl<'a, T> DefaultTimeReversalTransformable for SlaterDeterminant<'a, T> where
    T: ComplexFloat + Lapack
{
}

// ---------------------
// SymmetryTransformable
// ---------------------
impl<'a, T> SymmetryTransformable for SlaterDeterminant<'a, T>
where
    T: ComplexFloat + Lapack,
    SlaterDeterminant<'a, T>:
        SpatialUnitaryTransformable + SpinUnitaryTransformable + TimeReversalTransformable,
{
    fn sym_permute_sites_spatial(
        &self,
        symop: &SymmetryOperation,
    ) -> Result<Permutation<usize>, TransformationError> {
        if (symop.generating_element.threshold().log10() - self.mol.threshold.log10()).abs() >= 3.0
        {
            log::warn!(
                "Symmetry operation threshold ({:.3e}) and molecule threshold ({:.3e}) \
                differ by more than three orders of magnitudes.",
                symop.generating_element.threshold(),
                self.mol.threshold
            )
        }
        symop
            .act_permute(&self.mol.molecule_ordinary_atoms())
            .ok_or(TransformationError(format!(
            "Unable to determine the atom permutation corresponding to the operation `{symop}`.",
        )))
    }
}