qsym2/target/noci/backend/matelem/
mod.rs1use std::collections::HashSet;
2use std::fmt::{self, LowerExp};
3
4use anyhow::{self, ensure, format_err};
5use itertools::Itertools;
6use log;
7use ndarray::{Array2, Array3, ArrayView2, s};
8use ndarray_linalg::types::Lapack;
9use num_complex::ComplexFloat;
10use rayon::iter::{ParallelBridge, ParallelIterator};
11
12use crate::angmom::spinor_rotation_3d::StructureConstraint;
13use crate::symmetry::symmetry_element::SpecialSymmetryTransformation;
14use crate::symmetry::symmetry_group::SymmetryGroupProperties;
15use crate::symmetry::symmetry_transformation::SymmetryTransformable;
16use crate::target::determinant::SlaterDeterminant;
17use crate::target::noci::basis::{Basis, OrbitBasis};
18
19pub mod hamiltonian;
20pub mod overlap;
21
22pub trait OrbitMatrix<'a, T, SC>
23where
24 T: Lapack + ComplexFloat,
25 SC: StructureConstraint + Clone + fmt::Display,
26 SlaterDeterminant<'a, T, SC>: SymmetryTransformable,
27{
28 type MatrixElement;
30
31 fn calc_matrix_element(
49 &self,
50 det_w: &SlaterDeterminant<T, SC>,
51 det_x: &SlaterDeterminant<T, SC>,
52 sao: &ArrayView2<T>,
53 thresh_offdiag: <T as ComplexFloat>::Real,
54 thresh_zeroov: <T as ComplexFloat>::Real,
55 ) -> Result<Self::MatrixElement, anyhow::Error>;
56
57 fn t(x: &Self::MatrixElement) -> Self::MatrixElement;
59
60 fn conj(x: &Self::MatrixElement) -> Self::MatrixElement;
62
63 fn zero(&self) -> Self::MatrixElement;
65
66 fn norm_preserving_scalar_map<'b, G>(
73 &self,
74 i: usize,
75 orbit_basis: &'b OrbitBasis<'b, G, SlaterDeterminant<'a, T, SC>>,
76 ) -> Result<fn(&Self::MatrixElement) -> Self::MatrixElement, anyhow::Error>
77 where
78 G: SymmetryGroupProperties + Clone,
79 'a: 'b,
80 {
81 let group = orbit_basis.group();
82 let complex_symmetric_set = orbit_basis
83 .origins()
84 .iter()
85 .map(|det| det.complex_symmetric())
86 .collect::<HashSet<_>>();
87 ensure!(
88 complex_symmetric_set.len() == 1,
89 "Inconsistent complex-symmetric flags across origin determinants."
90 );
91 let complex_symmetric = *complex_symmetric_set
92 .iter()
93 .next()
94 .ok_or(format_err!("Unable to obtain the complex-symmetric flag."))?;
95 if complex_symmetric {
96 Err(format_err!(
97 "`norm_preserving_scalar_map` is currently not implemented for complex-symmetric inner products. This thus precludes the use of the Cayley table to speed up the computation of orbit matrices."
98 ))
99 } else {
100 if group
101 .get_index(i)
102 .unwrap_or_else(|| panic!("Group operation index `{i}` not found."))
103 .contains_time_reversal()
104 {
105 Ok(Self::conj)
106 } else {
107 Ok(Self::t)
108 }
109 }
110 }
111
112 fn calc_orbit_matrix<'g, G>(
125 &self,
126 orbit_basis: &'g OrbitBasis<'g, G, SlaterDeterminant<'a, T, SC>>,
127 use_cayley_table: bool,
128 sao: &ArrayView2<T>,
129 thresh_offdiag: <T as ComplexFloat>::Real,
130 thresh_zeroov: <T as ComplexFloat>::Real,
131 ) -> Result<Array2<Self::MatrixElement>, anyhow::Error>
132 where
133 G: SymmetryGroupProperties + Clone,
134 T: Sync + Send,
135 <T as ComplexFloat>::Real: Sync,
136 SlaterDeterminant<'a, T, SC>: Sync,
137 Self: Sync,
138 Self::MatrixElement: Send + LowerExp,
139 'a: 'g,
140 Self::MatrixElement: Clone,
141 {
142 let group = orbit_basis.group();
143 let order = group.order();
144 let det_origins = orbit_basis.origins();
145 let n_det_origins = det_origins.len();
146 let mut mat = Array2::<Self::MatrixElement>::from_elem(
147 (n_det_origins * order, n_det_origins * order),
148 self.zero(),
149 );
150
151 if let (Some(ctb), true) = (group.cayley_table(), use_cayley_table) {
152 log::debug!(
153 "Cayley table available and its use requested. Group closure will be used to speed up orbit matrix computation."
154 );
155 let mut ov_elems = orbit_basis
157 .iter()
158 .collect::<Result<Vec<_>, _>>()?
159 .iter()
160 .enumerate()
161 .cartesian_product(orbit_basis.origins().iter().enumerate())
162 .map(|((k_ii, k_ii_det), (jj, jj_det))| {
164 let k = k_ii.div_euclid(n_det_origins);
165 let ii = k_ii.rem_euclid(n_det_origins);
166 (
167 ii,
168 jj,
169 k,
170 self.calc_matrix_element(
171 k_ii_det,
172 jj_det,
173 sao,
174 thresh_offdiag,
175 thresh_zeroov,
176 ),
177 )
178 })
179 .collect::<Vec<_>>();
180 ov_elems.sort_by_key(|v| (v.0, v.1, v.2));
181 let mut ov_ii_jj_k =
182 Array3::from_elem((n_det_origins, n_det_origins, order), self.zero());
183 for (ii, jj, k, elem_res) in ov_elems {
184 log::debug!(
185 "⟨g_{k} Ψ_{ii} | Ψ_{jj}⟩ = ⟨{} Ψ_{ii} | Ψ_{jj}⟩ = {}",
186 group
187 .get_index(k)
188 .map(|g| g.to_string())
189 .unwrap_or_else(|| format!("g_{k}")),
190 elem_res
191 .as_ref()
192 .map(|v| format!("{v:+.8e}"))
193 .unwrap_or_else(|err| err.to_string())
194 );
195 ov_ii_jj_k[(ii, jj, k)] = elem_res?;
196 }
197
198 for v in [
200 (0..order),
201 (0..n_det_origins),
202 (0..order),
203 (0..n_det_origins),
204 ]
205 .into_iter()
206 .multi_cartesian_product()
207 {
208 let i = v[0];
209 let ii = v[1];
210 let j = v[2];
211 let jj = v[3];
212
213 let jinv = ctb
214 .slice(s![.., j])
215 .iter()
216 .position(|&x| x == 0)
217 .ok_or(format_err!(
218 "Unable to find the inverse of group element `{j}`."
219 ))?;
220 let k = ctb[(jinv, i)];
221 log::debug!(
222 "{}^(-1) = {} ⇒ ⟨g_{i} Ψ_{ii} | g_{j} Ψ_{jj}⟩ = ⟨{} Ψ_{ii} | {} Ψ_{jj}⟩ = ⟨{} Ψ_{ii} | Ψ_{jj}⟩ = {:+8e}",
223 group
224 .get_index(j)
225 .map(|g| g.to_string())
226 .unwrap_or_else(|| format!("g_{j}")),
227 group
228 .get_index(jinv)
229 .map(|g| g.to_string())
230 .unwrap_or_else(|| format!("g_{jinv}")),
231 group
232 .get_index(i)
233 .map(|g| g.to_string())
234 .unwrap_or_else(|| format!("g_{i}")),
235 group
236 .get_index(j)
237 .map(|g| g.to_string())
238 .unwrap_or_else(|| format!("g_{j}")),
239 group
240 .get_index(k)
241 .map(|g| g.to_string())
242 .unwrap_or_else(|| format!("g_{k}")),
243 ov_ii_jj_k[(ii, jj, k)],
244 );
245 mat[(i + ii * order, j + jj * order)] =
246 self.norm_preserving_scalar_map(jinv, orbit_basis)?(&ov_ii_jj_k[(ii, jj, k)]);
247 }
248 } else {
249 log::debug!(
250 "Cayley table not available or its use not requested. Group closure will not be used for orbit matrix computation."
251 );
252 let orbit_basis_vec = orbit_basis.iter().collect::<Result<Vec<_>, _>>()?;
253 let mut elems = orbit_basis_vec
254 .iter()
255 .enumerate()
256 .cartesian_product(orbit_basis_vec.iter().enumerate())
257 .par_bridge()
258 .map(|((i_ii, i_ii_det), (j_jj, j_jj_det))| {
259 let i = i_ii.div_euclid(n_det_origins);
260 let ii = i_ii.rem_euclid(n_det_origins);
261 let j = j_jj.div_euclid(n_det_origins);
262 let jj = j_jj.rem_euclid(n_det_origins);
263 let elem_res = self.calc_matrix_element(
264 i_ii_det,
265 j_jj_det,
266 sao,
267 thresh_offdiag,
268 thresh_zeroov,
269 );
270 (i, ii, j, jj, elem_res)
271 })
272 .collect::<Vec<_>>();
273 elems.sort_by_key(|v| (v.1, v.0, v.3, v.2));
274 for (i, ii, j, jj, elem_res) in elems {
275 log::debug!(
276 "⟨g_{i} Ψ_{ii} | g_{j} Ψ_{jj}⟩ = ⟨{} Ψ_{ii} | {} Ψ_{jj}⟩ = {}",
277 group
278 .get_index(i)
279 .map(|g| g.to_string())
280 .unwrap_or_else(|| format!("g_{i}")),
281 group
282 .get_index(j)
283 .map(|g| g.to_string())
284 .unwrap_or_else(|| format!("g_{j}")),
285 elem_res
286 .as_ref()
287 .map(|v| format!("{v:+.8e}"))
288 .unwrap_or_else(|err| err.to_string())
289 );
290 mat[(i + ii * order, j + jj * order)] = elem_res?;
291 }
292 }
293 Ok(mat)
294 }
295}