1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
//! Basis for non-orthogonal configuration interaction of Slater determinants.
use std::collections::VecDeque;
use anyhow;
use derive_builder::Builder;
use itertools::structs::Product;
use itertools::Itertools;
use crate::group::GroupProperties;
#[path = "basis_transformation.rs"]
mod basis_transformation;
#[cfg(test)]
#[path = "basis_tests.rs"]
mod basis_tests;
// =====
// Basis
// =====
// -----------------
// Trait definitions
// -----------------
/// Trait defining behaviours of a basis consisting of linear-space items.
pub trait Basis<I> {
/// Type of the iterator over items in the basis.
type BasisIter: Iterator<Item = Result<I, anyhow::Error>>;
/// Returns the number of items in the basis.
fn n_items(&self) -> usize;
/// An iterator over items in the basis.
fn iter(&self) -> Self::BasisIter;
/// Shared reference to the first item in the basis.
fn first(&self) -> Option<I>;
}
// --------------------------------------
// Struct definitions and implementations
// --------------------------------------
// ~~~~~~~~~~~~~~~~~~~~~~
// Lazy basis from orbits
// ~~~~~~~~~~~~~~~~~~~~~~
#[derive(Builder, Clone)]
pub(crate) struct OrbitBasis<'g, G, I>
where
G: GroupProperties,
{
/// The origins from which orbits are generated.
origins: Vec<I>,
/// The group acting on the origins to generate orbits, the concatenation of which forms the
/// basis.
group: &'g G,
/// Additional operators acting on the entire orbit basis (right-most operator acts first). Each
/// operator has an associated action that defines how it operatres on the elements in the
/// orbit basis.
#[builder(default = "None")]
prefactors: Option<
VecDeque<(
G::GroupElement,
fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
)>,
>,
/// A function defining the action of each group element on the origin.
action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
}
impl<'g, G, I> OrbitBasis<'g, G, I>
where
G: GroupProperties + Clone,
I: Clone,
{
pub(crate) fn builder() -> OrbitBasisBuilder<'g, G, I> {
OrbitBasisBuilder::<G, I>::default()
}
/// The origins from which orbits are generated.
pub fn origins(&self) -> &Vec<I> {
&self.origins
}
/// The group acting on the origins to generate orbits, the concatenation of which forms the
/// basis.
pub fn group(&self) -> &G {
self.group
}
/// Additional operators acting on the entire orbit basis (right-most operator acts first). Each
/// operator has an associated action that defines how it operatres on the elements in the
/// orbit basis.
pub fn prefactors(
&self,
) -> Option<
&VecDeque<(
G::GroupElement,
fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
)>,
> {
self.prefactors.as_ref()
}
}
impl<'g, G, I> Basis<I> for OrbitBasis<'g, G, I>
where
G: GroupProperties,
I: Clone,
{
type BasisIter = OrbitBasisIterator<G, I>;
fn n_items(&self) -> usize {
self.origins.len() * self.group.order()
}
fn iter(&self) -> Self::BasisIter {
OrbitBasisIterator::new(
self.prefactors.clone(),
self.group,
self.origins.clone(),
self.action,
)
}
fn first(&self) -> Option<I> {
if let Some(prefactors) = self.prefactors.as_ref() {
prefactors
.iter()
.rev()
.try_fold(self.origins.get(0)?.clone(), |acc, (symop, action)| {
(action)(symop, &acc).ok()
})
} else {
self.origins.get(0).cloned()
}
}
}
/// Lazy iterator for basis constructed from the concatenation of orbits generated from multiple
/// origins.
pub struct OrbitBasisIterator<G, I>
where
G: GroupProperties,
{
prefactors: Option<
VecDeque<(
G::GroupElement,
fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
)>,
>,
/// A mutable iterator over the Cartesian product between the group elements and the origins.
group_origin_iter: Product<
<<G as GroupProperties>::ElementCollection as IntoIterator>::IntoIter,
std::vec::IntoIter<I>,
>,
/// A function defining the action of each group element on the origin.
action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
}
impl<G, I> OrbitBasisIterator<G, I>
where
G: GroupProperties,
I: Clone,
{
/// Creates and returns a new orbit basis iterator.
///
/// # Arguments
///
/// * `group` - A group.
/// * `origins` - A slice of origins.
/// * `action` - A function or closure defining the action of each group element on the origins.
///
/// # Returns
///
/// An orbit basis iterator.
fn new(
prefactors: Option<
VecDeque<(
G::GroupElement,
fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
)>,
>,
group: &G,
origins: Vec<I>,
action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
) -> Self {
Self {
prefactors,
group_origin_iter: group
.elements()
.clone()
.into_iter()
.cartesian_product(origins.into_iter()),
action,
}
}
}
impl<G, I> Iterator for OrbitBasisIterator<G, I>
where
G: GroupProperties,
I: Clone,
{
type Item = Result<I, anyhow::Error>;
fn next(&mut self) -> Option<Self::Item> {
if let Some(prefactors) = self.prefactors.as_ref() {
// let group_action_result = self
// .group_origin_iter
// .next()
// .map(|(op, origin)| (self.action)(&op, &origin))?;
// Some((self.action)(prefactor, group_action_result.as_ref().ok()?))
self.group_origin_iter.next().and_then(|(op, origin)| {
prefactors
.iter()
.rev()
.try_fold((self.action)(&op, &origin), |acc_res, (symop, action)| {
acc_res.map(|acc| (action)(symop, &acc))
})
.ok()
})
} else {
self.group_origin_iter
.next()
.map(|(op, origin)| (self.action)(&op, &origin))
}
}
}
// ~~~~~~~~~~~
// Eager basis
// ~~~~~~~~~~~
#[derive(Builder, Clone)]
pub(crate) struct EagerBasis<I: Clone> {
/// The elements in the basis.
elements: Vec<I>,
}
impl<I: Clone> EagerBasis<I> {
pub(crate) fn builder() -> EagerBasisBuilder<I> {
EagerBasisBuilder::default()
}
}
impl<I: Clone> Basis<I> for EagerBasis<I> {
type BasisIter = std::vec::IntoIter<Result<I, anyhow::Error>>;
fn n_items(&self) -> usize {
self.elements.len()
}
fn iter(&self) -> Self::BasisIter {
self.elements
.iter()
.cloned()
.map(Ok)
.collect_vec()
.into_iter()
}
fn first(&self) -> Option<I> {
self.elements.get(0).cloned()
}
}