1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//! Basis for non-orthogonal configuration interaction of Slater determinants.

use std::collections::VecDeque;

use anyhow;
use derive_builder::Builder;
use itertools::structs::Product;
use itertools::Itertools;

use crate::group::GroupProperties;

#[path = "basis_transformation.rs"]
mod basis_transformation;

#[cfg(test)]
#[path = "basis_tests.rs"]
mod basis_tests;

// =====
// Basis
// =====

// -----------------
// Trait definitions
// -----------------

/// Trait defining behaviours of a basis consisting of linear-space items.
pub trait Basis<I> {
    /// Type of the iterator over items in the basis.
    type BasisIter: Iterator<Item = Result<I, anyhow::Error>>;

    /// Returns the number of items in the basis.
    fn n_items(&self) -> usize;

    /// An iterator over items in the basis.
    fn iter(&self) -> Self::BasisIter;

    /// Shared reference to the first item in the basis.
    fn first(&self) -> Option<I>;
}

// --------------------------------------
// Struct definitions and implementations
// --------------------------------------

// ~~~~~~~~~~~~~~~~~~~~~~
// Lazy basis from orbits
// ~~~~~~~~~~~~~~~~~~~~~~

#[derive(Builder, Clone)]
pub(crate) struct OrbitBasis<'g, G, I>
where
    G: GroupProperties,
{
    /// The origins from which orbits are generated.
    origins: Vec<I>,

    /// The group acting on the origins to generate orbits, the concatenation of which forms the
    /// basis.
    group: &'g G,

    /// Additional operators acting on the entire orbit basis (right-most operator acts first). Each
    /// operator has an associated action that defines how it operatres on the elements in the
    /// orbit basis.
    #[builder(default = "None")]
    prefactors: Option<
        VecDeque<(
            G::GroupElement,
            fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
        )>,
    >,

    /// A function defining the action of each group element on the origin.
    action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
}

impl<'g, G, I> OrbitBasis<'g, G, I>
where
    G: GroupProperties + Clone,
    I: Clone,
{
    pub(crate) fn builder() -> OrbitBasisBuilder<'g, G, I> {
        OrbitBasisBuilder::<G, I>::default()
    }

    /// The origins from which orbits are generated.
    pub fn origins(&self) -> &Vec<I> {
        &self.origins
    }

    /// The group acting on the origins to generate orbits, the concatenation of which forms the
    /// basis.
    pub fn group(&self) -> &G {
        self.group
    }

    /// Additional operators acting on the entire orbit basis (right-most operator acts first). Each
    /// operator has an associated action that defines how it operatres on the elements in the
    /// orbit basis.
    pub fn prefactors(
        &self,
    ) -> Option<
        &VecDeque<(
            G::GroupElement,
            fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
        )>,
    > {
        self.prefactors.as_ref()
    }
}

impl<'g, G, I> Basis<I> for OrbitBasis<'g, G, I>
where
    G: GroupProperties,
    I: Clone,
{
    type BasisIter = OrbitBasisIterator<G, I>;

    fn n_items(&self) -> usize {
        self.origins.len() * self.group.order()
    }

    fn iter(&self) -> Self::BasisIter {
        OrbitBasisIterator::new(
            self.prefactors.clone(),
            self.group,
            self.origins.clone(),
            self.action,
        )
    }

    fn first(&self) -> Option<I> {
        if let Some(prefactors) = self.prefactors.as_ref() {
            prefactors
                .iter()
                .rev()
                .try_fold(self.origins.get(0)?.clone(), |acc, (symop, action)| {
                    (action)(symop, &acc).ok()
                })
        } else {
            self.origins.get(0).cloned()
        }
    }
}

/// Lazy iterator for basis constructed from the concatenation of orbits generated from multiple
/// origins.
pub struct OrbitBasisIterator<G, I>
where
    G: GroupProperties,
{
    prefactors: Option<
        VecDeque<(
            G::GroupElement,
            fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
        )>,
    >,

    /// A mutable iterator over the Cartesian product between the group elements and the origins.
    group_origin_iter: Product<
        <<G as GroupProperties>::ElementCollection as IntoIterator>::IntoIter,
        std::vec::IntoIter<I>,
    >,

    /// A function defining the action of each group element on the origin.
    action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
}

impl<G, I> OrbitBasisIterator<G, I>
where
    G: GroupProperties,
    I: Clone,
{
    /// Creates and returns a new orbit basis iterator.
    ///
    /// # Arguments
    ///
    /// * `group` - A group.
    /// * `origins` - A slice of origins.
    /// * `action` - A function or closure defining the action of each group element on the origins.
    ///
    /// # Returns
    ///
    /// An orbit basis iterator.
    fn new(
        prefactors: Option<
            VecDeque<(
                G::GroupElement,
                fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
            )>,
        >,
        group: &G,
        origins: Vec<I>,
        action: fn(&G::GroupElement, &I) -> Result<I, anyhow::Error>,
    ) -> Self {
        Self {
            prefactors,
            group_origin_iter: group
                .elements()
                .clone()
                .into_iter()
                .cartesian_product(origins.into_iter()),
            action,
        }
    }
}

impl<G, I> Iterator for OrbitBasisIterator<G, I>
where
    G: GroupProperties,
    I: Clone,
{
    type Item = Result<I, anyhow::Error>;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(prefactors) = self.prefactors.as_ref() {
            // let group_action_result = self
            //     .group_origin_iter
            //     .next()
            //     .map(|(op, origin)| (self.action)(&op, &origin))?;
            // Some((self.action)(prefactor, group_action_result.as_ref().ok()?))
            self.group_origin_iter.next().and_then(|(op, origin)| {
                prefactors
                    .iter()
                    .rev()
                    .try_fold((self.action)(&op, &origin), |acc_res, (symop, action)| {
                        acc_res.map(|acc| (action)(symop, &acc))
                    })
                    .ok()
            })
        } else {
            self.group_origin_iter
                .next()
                .map(|(op, origin)| (self.action)(&op, &origin))
        }
    }
}

// ~~~~~~~~~~~
// Eager basis
// ~~~~~~~~~~~

#[derive(Builder, Clone)]
pub(crate) struct EagerBasis<I: Clone> {
    /// The elements in the basis.
    elements: Vec<I>,
}

impl<I: Clone> EagerBasis<I> {
    pub(crate) fn builder() -> EagerBasisBuilder<I> {
        EagerBasisBuilder::default()
    }
}

impl<I: Clone> Basis<I> for EagerBasis<I> {
    type BasisIter = std::vec::IntoIter<Result<I, anyhow::Error>>;

    fn n_items(&self) -> usize {
        self.elements.len()
    }

    fn iter(&self) -> Self::BasisIter {
        self.elements
            .iter()
            .cloned()
            .map(Ok)
            .collect_vec()
            .into_iter()
    }

    fn first(&self) -> Option<I> {
        self.elements.get(0).cloned()
    }
}