1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
//! Implementation of symmetry analysis for multi-determinantal wavefunctions.

use std::collections::HashSet;
use std::fmt;
use std::ops::Mul;

use anyhow::{self, ensure, format_err, Context};
use approx;
use derive_builder::Builder;
use itertools::Itertools;
use log;
use ndarray::{s, Array1, Array2, Array3, Axis, Ix2};
use ndarray_linalg::{
    eig::Eig,
    eigh::Eigh,
    types::{Lapack, Scalar},
    UPLO,
};
use num_complex::{Complex, ComplexFloat};
use num_traits::{Float, ToPrimitive, Zero};

use crate::analysis::{
    fn_calc_xmat_complex, fn_calc_xmat_real, EigenvalueComparisonMode, Orbit, OrbitIterator,
    Overlap, RepAnalysis,
};
use crate::auxiliary::misc::complex_modified_gram_schmidt;
use crate::chartab::chartab_group::CharacterProperties;
use crate::chartab::{DecompositionError, SubspaceDecomposable};
use crate::group::GroupType;
use crate::io::format::{log_subtitle, qsym2_output, QSym2Output};
use crate::symmetry::symmetry_element::symmetry_operation::SpecialSymmetryTransformation;
use crate::symmetry::symmetry_group::SymmetryGroupProperties;
use crate::symmetry::symmetry_transformation::{SymmetryTransformable, SymmetryTransformationKind};
use crate::target::determinant::SlaterDeterminant;
use crate::target::noci::basis::{Basis, OrbitBasis};
use crate::target::noci::multideterminant::MultiDeterminant;

// =======
// Overlap
// =======

impl<'a, T, B> Overlap<T, Ix2> for MultiDeterminant<'a, T, B>
where
    T: Lapack
        + ComplexFloat<Real = <T as Scalar>::Real>
        + fmt::Debug
        + Mul<<T as ComplexFloat>::Real, Output = T>,
    <T as ComplexFloat>::Real: fmt::Debug
        + approx::RelativeEq<<T as ComplexFloat>::Real>
        + approx::AbsDiffEq<Epsilon = <T as Scalar>::Real>,
    B: Basis<SlaterDeterminant<'a, T>> + Clone,
{
    fn complex_symmetric(&self) -> bool {
        self.complex_symmetric
    }

    /// Computes the overlap between two multi-determinantal wavefunctions.
    ///
    /// Determinants with fractional electrons are currently not supported.
    ///
    /// When one or both of the multi-determinantal wavefunctions have been acted on by an
    /// antiunitary operation, the correct Hermitian or complex-symmetric metric will be chosen in
    /// the evalulation of the overlap.
    ///
    /// # Arguments
    ///
    /// * `metric` - The atomic-orbital overlap matrix with respect to the conventional sesquilinear
    /// inner product.
    /// * `metric_h` - The atomic-orbital overlap matrix with respect to the bilinear inner product.
    ///
    /// # Panics
    ///
    /// Panics if `self` and `other` have mismatched spin constraints or numbers of coefficient
    /// matrices, or if fractional occupation numbers are detected.
    fn overlap(
        &self,
        other: &Self,
        metric: Option<&Array2<T>>,
        metric_h: Option<&Array2<T>>,
    ) -> Result<T, anyhow::Error> {
        ensure!(
            self.spin_constraint() == other.spin_constraint(),
            "Inconsistent spin constraints between `self` and `other`."
        );
        ensure!(
            self.coefficients.len() == other.coefficients.len(),
            "Inconsistent numbers of coefficients between `self` and `other`."
        );

        let s_dets = self.basis.iter().collect::<Result<Vec<_>, _>>()?;
        let o_dets = other.basis.iter().collect::<Result<Vec<_>, _>>()?;
        let swx_vec = s_dets
            .iter()
            .cartesian_product(o_dets.iter())
            .map(|(w, x)| w.overlap(x, metric, metric_h))
            .collect::<Result<Vec<_>, _>>()?;
        let d = self.coefficients.len();
        let swx = Array2::from_shape_vec((d, d), swx_vec)?;

        if self.complex_symmetric {
            Ok(self.coefficients.t().dot(&swx).dot(&other.coefficients))
        } else {
            Ok(self
                .coefficients
                .t()
                .mapv(|x| x.conj())
                .dot(&swx)
                .dot(&other.coefficients))
        }
    }

    /// Returns the mathematical definition of the overlap between two multi-determinantal
    /// wavefunctions.
    fn overlap_definition(&self) -> String {
        let k = if self.complex_symmetric() { "κ " } else { "" };
        format!("⟨{k}Ψ_1|Ψ_2⟩ = ∫ [{k}Ψ_1(x^Ne)]* Ψ_2(x^Ne) dx^Ne")
    }
}

// =============================
// MultiDeterminantSymmetryOrbit
// =============================

// -----------------
// Struct definition
// -----------------

/// Structure to manage symmetry orbits (*i.e.* orbits generated by symmetry groups) of
/// multi-determinantal wavefunctions.
#[derive(Builder, Clone)]
pub struct MultiDeterminantSymmetryOrbit<'a, 'g, G, T, B>
where
    G: SymmetryGroupProperties,
    T: ComplexFloat + fmt::Debug + Lapack,
    B: 'a + Basis<SlaterDeterminant<'a, T>> + Clone,
    MultiDeterminant<'a, T, B>: SymmetryTransformable,
{
    /// The generating symmetry group.
    group: &'g G,

    /// The origin multi-determinantal wavefunction of the orbit.
    origin: &'a MultiDeterminant<'a, T, B>,

    /// The threshold for determining zero eigenvalues in the orbit overlap matrix.
    pub(crate) linear_independence_threshold: <T as ComplexFloat>::Real,

    /// The threshold for determining if calculated multiplicities in representation analysis are
    /// integral.
    integrality_threshold: <T as ComplexFloat>::Real,

    /// The kind of transformation determining the way the symmetry operations in `group` act on
    /// [`Self::origin`].
    symmetry_transformation_kind: SymmetryTransformationKind,

    /// The overlap matrix between the symmetry-equivalent multi-eterminantal wavefunctions in the
    /// orbit.
    #[builder(setter(skip), default = "None")]
    smat: Option<Array2<T>>,

    /// The eigenvalues of the overlap matrix between the symmetry-equivalent multi-determinantal
    /// wavefunctions in the orbit.
    #[builder(setter(skip), default = "None")]
    pub(crate) smat_eigvals: Option<Array1<T>>,

    /// The $`\mathbf{X}`$ matrix for the overlap matrix between the symmetry-equivalent
    /// multi-determinantal wavefunctions in the orbit.
    ///
    /// See [`RepAnalysis::xmat`] for further information.
    #[builder(setter(skip), default = "None")]
    xmat: Option<Array2<T>>,

    /// An enumerated type specifying the comparison mode for filtering out orbit overlap
    /// eigenvalues.
    eigenvalue_comparison_mode: EigenvalueComparisonMode,
}

// ----------------------------
// Struct method implementation
// ----------------------------

impl<'a, 'g, G, T, B> MultiDeterminantSymmetryOrbit<'a, 'g, G, T, B>
where
    G: SymmetryGroupProperties + Clone,
    T: ComplexFloat + fmt::Debug + Lapack,
    B: 'a + Basis<SlaterDeterminant<'a, T>> + Clone,
    MultiDeterminant<'a, T, B>: SymmetryTransformable,
{
    /// Returns a builder for constructing a new multi-determinantal wavefunction symmetry orbit.
    pub fn builder() -> MultiDeterminantSymmetryOrbitBuilder<'a, 'g, G, T, B> {
        MultiDeterminantSymmetryOrbitBuilder::default()
    }

    /// Returns the origin of the multi-determinantal wavefunction symmetry orbit.
    pub fn origin(&self) -> &MultiDeterminant<'a, T, B> {
        self.origin
    }
}

impl<'a, 'g, G, B> MultiDeterminantSymmetryOrbit<'a, 'g, G, f64, B>
where
    G: SymmetryGroupProperties,
    B: 'a + Basis<SlaterDeterminant<'a, f64>> + Clone,
    MultiDeterminant<'a, f64, B>: SymmetryTransformable,
{
    fn_calc_xmat_real!(
        /// Calculates the $`\mathbf{X}`$ matrix for real and symmetric overlap matrix
        /// $`\mathbf{S}`$ between the symmetry-equivalent Slater determinants in the orbit.
        ///
        /// The resulting $`\mathbf{X}`$ is stored in the orbit.
        ///
        /// # Arguments
        ///
        /// * `preserves_full_rank` - If `true`, when $`\mathbf{S}`$ is already of full rank, then
        /// $`\mathbf{X}`$ is set to be the identity matrix to avoid mixing the orbit determinants.
        /// If `false`, $`\mathbf{X}`$ also orthogonalises $`\mathbf{S}`$ even when it is already of
        /// full rank.
        pub calc_xmat
    );
}

impl<'a, 'g, G, T, B> MultiDeterminantSymmetryOrbit<'a, 'g, G, Complex<T>, B>
where
    G: SymmetryGroupProperties,
    T: Float + Scalar<Complex = Complex<T>>,
    Complex<T>: ComplexFloat<Real = T> + Scalar<Real = T, Complex = Complex<T>> + Lapack,
    B: 'a + Basis<SlaterDeterminant<'a, Complex<T>>> + Clone,
    MultiDeterminant<'a, Complex<T>, B>: SymmetryTransformable + Overlap<Complex<T>, Ix2>,
{
    fn_calc_xmat_complex!(
        /// Calculates the $`\mathbf{X}`$ matrix for complex and symmetric or Hermitian overlap
        /// matrix $`\mathbf{S}`$ between the symmetry-equivalent Slater determinants in the orbit.
        ///
        /// The resulting $`\mathbf{X}`$ is stored in the orbit.
        ///
        /// # Arguments
        ///
        /// * `preserves_full_rank` - If `true`, when $`\mathbf{S}`$ is already of full rank, then
        /// $`\mathbf{X}`$ is set to be the identity matrix to avoid mixing the orbit determinants.
        /// If `false`, $`\mathbf{X}`$ also orthogonalises $`\mathbf{S}`$ even when it is already of
        /// full rank.
        pub calc_xmat
    );
}

// ---------------------
// Trait implementations
// ---------------------

// ~~~~~
// Orbit
// ~~~~~

impl<'a, 'g, G, T, B> Orbit<G, MultiDeterminant<'a, T, B>>
    for MultiDeterminantSymmetryOrbit<'a, 'g, G, T, B>
where
    G: SymmetryGroupProperties,
    T: ComplexFloat + fmt::Debug + Lapack,
    B: 'a + Basis<SlaterDeterminant<'a, T>> + Clone,
    MultiDeterminant<'a, T, B>: SymmetryTransformable,
{
    type OrbitIter = OrbitIterator<'a, G, MultiDeterminant<'a, T, B>>;

    fn group(&self) -> &G {
        self.group
    }

    fn origin(&self) -> &MultiDeterminant<'a, T, B> {
        self.origin
    }

    fn iter(&self) -> Self::OrbitIter {
        OrbitIterator::new(
            self.group,
            self.origin,
            match self.symmetry_transformation_kind {
                SymmetryTransformationKind::Spatial => |op, multidet| {
                    multidet.sym_transform_spatial(op).with_context(|| {
                        format!("Unable to apply `{op}` spatially on the origin multi-determinantal wavefunction")
                    })
                },
                SymmetryTransformationKind::SpatialWithSpinTimeReversal => |op, multidet| {
                    multidet.sym_transform_spatial_with_spintimerev(op).with_context(|| {
                        format!("Unable to apply `{op}` spatially (with spin-including time reversal) on the origin multi-determinantal wavefunction")
                    })
                },
                SymmetryTransformationKind::Spin => |op, multidet| {
                    multidet.sym_transform_spin(op).with_context(|| {
                        format!("Unable to apply `{op}` spin-wise on the origin multi-determinantal wavefunction")
                    })
                },
                SymmetryTransformationKind::SpinSpatial => |op, multidet| {
                    multidet.sym_transform_spin_spatial(op).with_context(|| {
                        format!("Unable to apply `{op}` spin-spatially on the origin multi-determinantal wavefunction")
                    })
                },
            },
        )
    }
}

// ~~~~~~~~~~~
// RepAnalysis
// ~~~~~~~~~~~

impl<'a, 'g, G, T, B> RepAnalysis<G, MultiDeterminant<'a, T, B>, T, Ix2>
    for MultiDeterminantSymmetryOrbit<'a, 'g, G, T, B>
where
    G: SymmetryGroupProperties,
    G::CharTab: SubspaceDecomposable<T>,
    T: Lapack
        + ComplexFloat<Real = <T as Scalar>::Real>
        + fmt::Debug
        + Mul<<T as ComplexFloat>::Real, Output = T>,
    <T as ComplexFloat>::Real: fmt::Debug
        + Zero
        + From<u16>
        + ToPrimitive
        + approx::RelativeEq<<T as ComplexFloat>::Real>
        + approx::AbsDiffEq<Epsilon = <T as Scalar>::Real>,
    B: 'a + Basis<SlaterDeterminant<'a, T>> + Clone,
    MultiDeterminant<'a, T, B>: SymmetryTransformable,
{
    fn set_smat(&mut self, smat: Array2<T>) {
        self.smat = Some(smat)
    }

    fn smat(&self) -> Option<&Array2<T>> {
        self.smat.as_ref()
    }

    fn xmat(&self) -> &Array2<T> {
        self.xmat
            .as_ref()
            .expect("Orbit overlap orthogonalisation matrix not found.")
    }

    fn norm_preserving_scalar_map(&self, i: usize) -> Result<fn(T) -> T, anyhow::Error> {
        if self.origin.complex_symmetric {
            Err(format_err!("`norm_preserving_scalar_map` is currently not implemented for complex symmetric overlaps."))
        } else {
            if self
                .group
                .get_index(i)
                .unwrap_or_else(|| panic!("Group operation index `{i}` not found."))
                .contains_time_reversal()
            {
                Ok(ComplexFloat::conj)
            } else {
                Ok(|x| x)
            }
        }
    }

    fn integrality_threshold(&self) -> <T as ComplexFloat>::Real {
        self.integrality_threshold
    }

    fn eigenvalue_comparison_mode(&self) -> &EigenvalueComparisonMode {
        &self.eigenvalue_comparison_mode
    }

    /// Reduces the representation or corepresentation spanned by the multi-determinantal
    /// wavefunctions in the orbit to a direct sum of the irreducible representations or
    /// corepresentations of the generating symmetry group.
    ///
    /// # Returns
    ///
    /// The decomposed result.
    ///
    /// # Errors
    ///
    /// Errors if the decomposition fails, *e.g.* because one or more calculated multiplicities
    /// are non-integral, or also because the combination of group type, transformation type, and
    /// oddity of the number of electrons would not give sensible symmetry results. In particular,
    /// spin or spin-spatial symmetry analysis of odd-electron systems in unitary-represented
    /// magnetic groups is not valid.
    fn analyse_rep(
        &self,
    ) -> Result<
        <<G as CharacterProperties>::CharTab as SubspaceDecomposable<T>>::Decomposition,
        DecompositionError,
    > {
        log::debug!("Analysing representation symmetry for a multi-determinantal wavefunction...");
        let mut nelectrons_set = self
            .origin()
            .basis
            .iter()
            .map(|det_res| det_res.and_then(|det| {
                let det_nelectrons_float = det.nelectrons();
                if approx::relative_eq!(
                    det_nelectrons_float.round(),
                    det_nelectrons_float,
                    epsilon = self.integrality_threshold,
                    max_relative = self.integrality_threshold
                ) {
                    det_nelectrons_float.round().to_usize().ok_or(format_err!("Unable to convert the number of electrons `{det_nelectrons_float:.7}` to `usize`."))
                } else {
                    Err(format_err!("Fractional number of electrons encountered: `{det_nelectrons_float:.7}`"))
                }
            }))
            .collect::<Result<HashSet<_>, _>>()
            .map_err(|err| DecompositionError(err.to_string()))?;
        if nelectrons_set.len() != 1 {
            Err(DecompositionError("Symmetry analysis for multi-determinantal wavefunctions with multiple numbers of electrons is not yet supported.".to_string()))
        } else {
            let nelectrons = nelectrons_set.drain().next().ok_or(DecompositionError(
                "Unable to obtain the number of electrons.".to_string(),
            ))?;
            let (valid_symmetry, err_str) = if nelectrons.rem_euclid(2) == 0 {
                // Even number of electrons; always valid
                (true, String::new())
            } else {
                // Odd number of electrons; validity depends on group and orbit type
                match self.symmetry_transformation_kind {
                    SymmetryTransformationKind::Spatial => (true, String::new()),
                    SymmetryTransformationKind::SpatialWithSpinTimeReversal
                        | SymmetryTransformationKind::Spin
                        | SymmetryTransformationKind::SpinSpatial => {
                        match self.group().group_type() {
                            GroupType::Ordinary(_) => (true, String::new()),
                            GroupType::MagneticGrey(_) | GroupType::MagneticBlackWhite(_) => {
                                (!self.group().unitary_represented(),
                                "Unitary-represented magnetic groups cannot be used for symmetry analysis of odd-electron systems where spin is treated explicitly.".to_string())
                            }
                        }
                    }
                }
            };

            if valid_symmetry {
                let chis = self
                    .calc_characters()
                    .map_err(|err| DecompositionError(err.to_string()))?;
                log::debug!("Characters calculated.");

                log_subtitle("Multi-determinantal wavefunction orbit characters");
                qsym2_output!("");
                self.characters_to_string(&chis, self.integrality_threshold)
                    .log_output_display();
                qsym2_output!("");

                let res = self.group().character_table().reduce_characters(
                    &chis.iter().map(|(cc, chi)| (cc, *chi)).collect::<Vec<_>>(),
                    self.integrality_threshold(),
                );
                log::debug!("Characters reduced.");
                log::debug!("Analysing representation symmetry for a multi-determinantal wavefunction... Done.");
                res
            } else {
                Err(DecompositionError(err_str))
            }
        }
    }
}

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Optimised implementation for multi-determinantal wavefunctions constructed from orbits
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
impl<'a, 'go, 'g, G, T>
    MultiDeterminantSymmetryOrbit<'a, 'go, G, T, OrbitBasis<'g, G, SlaterDeterminant<'a, T>>>
where
    G: SymmetryGroupProperties + Clone,
    G::CharTab: SubspaceDecomposable<T>,
    T: Lapack
        + ComplexFloat<Real = <T as Scalar>::Real>
        + fmt::Debug
        + Mul<<T as ComplexFloat>::Real, Output = T>,
    <T as ComplexFloat>::Real: fmt::Debug
        + Zero
        + From<u16>
        + ToPrimitive
        + approx::RelativeEq<<T as ComplexFloat>::Real>
        + approx::AbsDiffEq<Epsilon = <T as Scalar>::Real>,
    MultiDeterminant<'a, T, OrbitBasis<'g, G, SlaterDeterminant<'a, T>>>: SymmetryTransformable,
{
    /// Calculates and stores the overlap matrix between multi-determinantal wavefunctions in the
    /// orbit, with respect to a metric of the basis in which the constituting Slater determinants
    /// are expressed.
    ///
    /// This function is particularly optimised for multi-determinantal wavefunctions constructed
    /// from orbits of origin Slater determinants such that the multi-determinantal wavefunctions
    /// are never explicitly transformed by group operations.
    ///
    /// # Arguments
    ///
    /// * `metric` - The metric of the basis in which the orbit items are expressed.
    /// * `metric_h` - The complex-symmetric metric of the basis in which the orbit items are
    /// expressed. This is required if antiunitary operations are involved.
    /// * `use_cayley_table` - A boolean indicating if the Cayley table of the group should be used
    /// to speed up the computation of the overlap matrix. If `false`, this will revert back to the
    /// non-optimised overlap matrix calculation.
    pub(crate) fn calc_smat_optimised(
        &mut self,
        metric: Option<&Array2<T>>,
        metric_h: Option<&Array2<T>>,
        use_cayley_table: bool,
    ) -> Result<&mut Self, anyhow::Error> {
        ensure!(
            self.group.name() == self.origin.basis.group().name(),
            "Multi-determinantal wavefunction orbit-generating group does not match symmetry analysis group."
        );

        if let (Some(ctb), true) = (self.group().cayley_table(), use_cayley_table) {
            log::debug!("Cayley table available. Group closure will be used to speed up overlap matrix computation.");

            let order = self.group.order();
            let mut smat = Array2::<T>::zeros((order, order));
            let multidet_0 = self.origin();
            let det_origins = multidet_0.basis.origins();
            let n_det_origins = det_origins.len();

            let detov_kpwx_vec = multidet_0
                .basis
                .iter()
                .collect::<Result<Vec<_>, _>>()?
                .into_iter()
                .cartesian_product(det_origins.iter())
                .map(|(w, x)| w.overlap(x, metric, metric_h))
                .collect::<Result<Vec<_>, _>>()?;
            let detov_kpwx =
                Array3::from_shape_vec((order, n_det_origins, n_det_origins), detov_kpwx_vec)?;
            let ovs = (0..order)
                .map(|k| {
                    [
                        (0..order),
                        (0..order),
                        (0..n_det_origins),
                        (0..n_det_origins),
                    ]
                    .into_iter()
                    .multi_cartesian_product()
                    .try_fold(T::zero(), |acc, v| {
                        let ip = v[0];
                        let jp = v[1];
                        let w = v[2];
                        let x = v[3];
                        let aipw = multidet_0.coefficients[ip * n_det_origins + w];
                        let ajpx = multidet_0.coefficients[jp * n_det_origins + x];

                        let jpinv = ctb.slice(s![.., jp]).iter().position(|&x| x == 0).ok_or(
                            format_err!("Unable to find the inverse of group element `{jp}`."),
                        )?;
                        let kp = ctb[(jpinv, ctb[(k, ip)])];
                        let ukipwjpx = self.norm_preserving_scalar_map(jp)?(detov_kpwx[(kp, w, x)]);

                        Ok::<_, anyhow::Error>(
                            acc + self.norm_preserving_scalar_map(k)?(aipw.conj()) * ukipwjpx * ajpx,
                        )
                    })
                })
                .collect::<Result<Vec<_>, _>>()?;
            for (i, j) in (0..order).cartesian_product(0..order) {
                let jinv = ctb
                    .slice(s![.., j])
                    .iter()
                    .position(|&x| x == 0)
                    .ok_or(format_err!(
                        "Unable to find the inverse of group element `{j}`."
                    ))?;
                let jinv_i = ctb[(jinv, i)];
                smat[(i, j)] = self.norm_preserving_scalar_map(jinv)?(ovs[jinv_i]);
            }
            if self.origin().complex_symmetric() {
                self.set_smat(
                    (smat.clone() + smat.t().to_owned()).mapv(|x| x / (T::one() + T::one())),
                )
            } else {
                self.set_smat(
                    (smat.clone() + smat.t().to_owned().mapv(|x| x.conj()))
                        .mapv(|x| x / (T::one() + T::one())),
                )
            }
            Ok(self)
        } else {
            self.calc_smat(metric, metric_h, use_cayley_table)
        }
    }
}