1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//! Orbitals.

use std::fmt;

use anyhow::{self, format_err};
use approx;
use derive_builder::Builder;
use ndarray::{s, Array1, Array2, Ix2};
use ndarray_einsum_beta::*;
use ndarray_linalg::types::Lapack;
use num_complex::{Complex, ComplexFloat};
use num_traits::float::{Float, FloatConst};

use crate::angmom::spinor_rotation_3d::SpinConstraint;
use crate::auxiliary::molecule::Molecule;
use crate::basis::ao::BasisAngularOrder;
use crate::target::density::Density;

#[cfg(test)]
mod orbital_tests;

pub mod orbital_analysis;
mod orbital_transformation;

// ==================
// Struct definitions
// ==================

/// Structure to manage molecular orbitals. Each molecular orbital is essentially a one-electron
/// Slater determinant.
#[derive(Builder, Clone)]
#[builder(build_fn(validate = "Self::validate"))]
pub struct MolecularOrbital<'a, T>
where
    T: ComplexFloat + Lapack,
{
    /// The spin constraint associated with the coefficients describing this molecular orbital.
    spin_constraint: SpinConstraint,

    /// If the spin constraint allows for multiple spin spaces, this gives the spin-space index of
    /// this molecular orbital.
    spin_index: usize,

    /// A boolean indicating if the orbital has been acted on by an antiunitary operation. This is
    /// so that the correct metric can be used during overlap evaluation.
    #[builder(default = "false")]
    complex_conjugated: bool,

    /// The angular order of the basis functions with respect to which the coefficients are
    /// expressed.
    bao: &'a BasisAngularOrder<'a>,

    /// A boolean indicating if inner products involving this molecular orbital should be the
    /// complex-symmetric bilinear form, rather than the conventional Hermitian sesquilinear form.
    complex_symmetric: bool,

    /// The associated molecule.
    mol: &'a Molecule,

    /// The coefficients describing this molecular orbital.
    coefficients: Array1<T>,

    /// The energy of this molecular orbital.
    #[builder(default = "None")]
    energy: Option<T>,

    /// The threshold for comparing determinants.
    threshold: <T as ComplexFloat>::Real,
}

impl<'a, T> MolecularOrbitalBuilder<'a, T>
where
    T: ComplexFloat + Lapack,
{
    fn validate(&self) -> Result<(), String> {
        let bao = self
            .bao
            .ok_or("No `BasisAngularOrder` found.".to_string())?;
        let nbas = bao.n_funcs();
        let coefficients = self
            .coefficients
            .as_ref()
            .ok_or("No coefficients found.".to_string())?;
        let spin_index = self
            .spin_index
            .ok_or("No `spin_index` found.".to_string())?;

        let spincons = match self
            .spin_constraint
            .as_ref()
            .ok_or("No spin constraint found.".to_string())?
        {
            SpinConstraint::Restricted(n) | SpinConstraint::Unrestricted(n, _) => {
                spin_index < usize::from(*n) && coefficients.shape()[0] == nbas
            }
            SpinConstraint::Generalised(nspins, _) => {
                spin_index == 0
                    && coefficients.shape()[0].rem_euclid(nbas) == 0
                    && coefficients.shape()[0].div_euclid(nbas) == usize::from(*nspins)
            }
        };
        if !spincons {
            log::error!("The coefficient vector fails to satisfy the specified spin constraint.");
        }

        let mol = self.mol.ok_or("No molecule found.".to_string())?;
        let natoms = mol.atoms.len() == bao.n_atoms();
        if !natoms {
            log::error!("The number of atoms in the molecule does not match the number of local sites in the basis.");
        }

        if spincons && natoms {
            Ok(())
        } else {
            Err("Molecular orbital validation failed.".to_string())
        }
    }
}

impl<'a, T> MolecularOrbital<'a, T>
where
    T: ComplexFloat + Clone + Lapack,
{
    /// Returns a builder to construct a new [`MolecularOrbital`].
    pub fn builder() -> MolecularOrbitalBuilder<'a, T> {
        MolecularOrbitalBuilder::default()
    }

    /// Augments the encoding of coefficients in this molecular orbital to that in the
    /// corresponding generalised spin constraint.
    ///
    /// # Returns
    ///
    /// The equivalent molecular orbital with the coefficients encoded in the generalised spin
    /// constraint.
    pub fn to_generalised(&self) -> Self {
        match self.spin_constraint {
            SpinConstraint::Restricted(n) => {
                let nbas = self.bao.n_funcs();

                let cr = &self.coefficients;
                let mut cg = Array1::<T>::zeros(nbas * usize::from(n));
                let start = nbas * self.spin_index;
                let end = nbas * (self.spin_index + 1);
                cg.slice_mut(s![start..end]).assign(cr);
                Self::builder()
                    .coefficients(cg)
                    .bao(self.bao)
                    .mol(self.mol)
                    .spin_constraint(SpinConstraint::Generalised(n, false))
                    .spin_index(0)
                    .complex_symmetric(self.complex_symmetric)
                    .threshold(self.threshold)
                    .build()
                    .expect("Unable to construct a generalised molecular orbital.")
            }
            SpinConstraint::Unrestricted(n, increasingm) => {
                let nbas = self.bao.n_funcs();

                let cr = &self.coefficients;
                let mut cg = Array1::<T>::zeros(nbas * usize::from(n));
                let start = nbas * self.spin_index;
                let end = nbas * (self.spin_index + 1);
                cg.slice_mut(s![start..end]).assign(cr);
                Self::builder()
                    .coefficients(cg)
                    .bao(self.bao)
                    .mol(self.mol)
                    .spin_constraint(SpinConstraint::Generalised(n, increasingm))
                    .spin_index(0)
                    .complex_symmetric(self.complex_symmetric)
                    .threshold(self.threshold)
                    .build()
                    .expect("Unable to construct a generalised molecular orbital.")
            }
            SpinConstraint::Generalised(_, _) => self.clone(),
        }
    }

    /// Returns a shared reference to the coefficient array.
    pub fn coefficients(&self) -> &Array1<T> {
        &self.coefficients
    }

    /// Returns a shared reference to the spin constraint.
    pub fn spin_constraint(&self) -> &SpinConstraint {
        &self.spin_constraint
    }

    /// Returns a shared reference to the [`BasisAngularOrder`] description of the basis in which
    /// the orbital coefficients are written.
    pub fn bao(&self) -> &BasisAngularOrder {
        self.bao
    }

    /// Returns the molecule associated with this molecular orbital.
    pub fn mol(&self) -> &Molecule {
        self.mol
    }

    /// Returns the complex-symmetric flag of the molecular orbital.
    pub fn complex_symmetric(&self) -> bool {
        self.complex_symmetric
    }

    /// Returns the threshold with which molecular orbitals are compared.
    pub fn threshold(&self) -> <T as ComplexFloat>::Real {
        self.threshold
    }
}

impl<'a> MolecularOrbital<'a, f64> {
    /// Constructs the total density of the molecular orbital.
    pub fn to_total_density(&'a self) -> Result<Density<'a, f64>, anyhow::Error> {
        match self.spin_constraint {
            SpinConstraint::Restricted(nspins) => {
                let denmat = f64::from(nspins) * einsum(
                    "m,n->mn",
                    &[&self.coefficients.view(), &self.coefficients.view()]
                )
                .expect("Unable to construct a density matrix from the coefficient matrix.")
                .into_dimensionality::<Ix2>()
                .expect("Unable to convert the resultant density matrix to two dimensions.");
                Density::<f64>::builder()
                    .density_matrix(denmat)
                    .bao(self.bao())
                    .mol(self.mol())
                    .complex_symmetric(self.complex_symmetric())
                    .threshold(self.threshold())
                    .build()
                    .map_err(|err| format_err!(err))
            }
            SpinConstraint::Unrestricted(_, _) => {
                let denmat = einsum(
                    "m,n->mn",
                    &[&self.coefficients.view(), &self.coefficients.view()]
                )
                .expect("Unable to construct a density matrix from the coefficient matrix.")
                .into_dimensionality::<Ix2>()
                .expect("Unable to convert the resultant density matrix to two dimensions.");
                Density::<f64>::builder()
                    .density_matrix(denmat)
                    .bao(self.bao())
                    .mol(self.mol())
                    .complex_symmetric(self.complex_symmetric())
                    .threshold(self.threshold())
                    .build()
                    .map_err(|err| format_err!(err))
            }
            SpinConstraint::Generalised(nspins, _) => {
                let full_denmat = einsum(
                    "m,n->mn",
                    &[&self.coefficients.view(), &self.coefficients.view()]
                )
                .expect("Unable to construct a density matrix from the coefficient matrix.")
                .into_dimensionality::<Ix2>()
                .expect("Unable to convert the resultant density matrix to two dimensions.");
                let nspatial = self.bao().n_funcs();
                let denmat = (0..usize::from(nspins)).fold(
                    Array2::<f64>::zeros((nspatial, nspatial)),
                    |acc, ispin| acc + full_denmat.slice(s![
                        ispin*nspatial..(ispin+1)*nspatial, ispin*nspatial..(ispin+1)*nspatial
                    ])
                );
                Density::<f64>::builder()
                    .density_matrix(denmat)
                    .bao(self.bao())
                    .mol(self.mol())
                    .complex_symmetric(self.complex_symmetric())
                    .threshold(self.threshold())
                    .build()
                    .map_err(|err| format_err!(err))
            }
        }
    }
}

impl<'a, T> MolecularOrbital<'a, Complex<T>>
where
    T: Float + FloatConst + Lapack + From<u16>,
    Complex<T>: Lapack,
{
    /// Constructs the total density of the molecular orbital.
    pub fn to_total_density(&'a self) -> Result<Density<'a, Complex<T>>, anyhow::Error> {
        match self.spin_constraint {
            SpinConstraint::Restricted(nspins) => {
                let nspins_t = Complex::<T>::from(<T as From<u16>>::from(nspins));
                let denmat = einsum(
                    "m,n->mn",
                    &[&self.coefficients.view(), &self.coefficients.map(Complex::conj).view()]
                )
                .expect("Unable to construct a density matrix from the coefficient matrix.")
                .into_dimensionality::<Ix2>()
                .expect("Unable to convert the resultant density matrix to two dimensions.")
                .map(|x| x * nspins_t);
                Density::<Complex<T>>::builder()
                    .density_matrix(denmat)
                    .bao(self.bao())
                    .mol(self.mol())
                    .complex_symmetric(self.complex_symmetric())
                    .threshold(self.threshold())
                    .build()
                    .map_err(|err| format_err!(err))
            }
            SpinConstraint::Unrestricted(_, _) => {
                let denmat = einsum(
                    "m,n->mn",
                    &[&self.coefficients.view(), &self.coefficients.map(Complex::conj).view()]
                )
                .expect("Unable to construct a density matrix from the coefficient matrix.")
                .into_dimensionality::<Ix2>()
                .expect("Unable to convert the resultant density matrix to two dimensions.");
                Density::<Complex<T>>::builder()
                    .density_matrix(denmat)
                    .bao(self.bao())
                    .mol(self.mol())
                    .complex_symmetric(self.complex_symmetric())
                    .threshold(self.threshold())
                    .build()
                    .map_err(|err| format_err!(err))
            }
            SpinConstraint::Generalised(nspins, _) => {
                let full_denmat = einsum(
                    "m,n->mn",
                    &[&self.coefficients.view(), &self.coefficients.map(Complex::conj).view()]
                )
                .expect("Unable to construct a density matrix from the coefficient matrix.")
                .into_dimensionality::<Ix2>()
                .expect("Unable to convert the resultant density matrix to two dimensions.");
                let nspatial = self.bao().n_funcs();
                let denmat = (0..usize::from(nspins)).fold(
                    Array2::<Complex<T>>::zeros((nspatial, nspatial)),
                    |acc, ispin| acc + full_denmat.slice(s![
                        ispin*nspatial..(ispin+1)*nspatial, ispin*nspatial..(ispin+1)*nspatial
                    ])
                );
                Density::<Complex<T>>::builder()
                    .density_matrix(denmat)
                    .bao(self.bao())
                    .mol(self.mol())
                    .complex_symmetric(self.complex_symmetric())
                    .threshold(self.threshold())
                    .build()
                    .map_err(|err| format_err!(err))
            }
        }
    }
}

// =====================
// Trait implementations
// =====================

// ----
// From
// ----
impl<'a, T> From<MolecularOrbital<'a, T>> for MolecularOrbital<'a, Complex<T>>
where
    T: Float + FloatConst + Lapack,
    Complex<T>: Lapack,
{
    fn from(value: MolecularOrbital<'a, T>) -> Self {
        MolecularOrbital::<'a, Complex<T>>::builder()
            .coefficients(value.coefficients.map(Complex::from))
            .bao(value.bao)
            .mol(value.mol)
            .spin_constraint(value.spin_constraint)
            .spin_index(value.spin_index)
            .complex_symmetric(value.complex_symmetric)
            .threshold(value.threshold)
            .build()
            .expect("Unable to construct a complex molecular orbital.")
    }
}

// ---------
// PartialEq
// ---------
impl<'a, T> PartialEq for MolecularOrbital<'a, T>
where
    T: ComplexFloat<Real = f64> + Lapack,
{
    fn eq(&self, other: &Self) -> bool {
        let thresh = (self.threshold * other.threshold).sqrt();
        let coefficients_eq = approx::relative_eq!(
            (&self.coefficients - &other.coefficients)
                .map(|x| ComplexFloat::abs(*x).powi(2))
                .sum()
                .sqrt(),
            0.0,
            epsilon = thresh,
            max_relative = thresh,
        );
        self.spin_constraint == other.spin_constraint
            && self.spin_index == other.spin_index
            && self.bao == other.bao
            && self.mol == other.mol
            && coefficients_eq
    }
}

// --
// Eq
// --
impl<'a, T> Eq for MolecularOrbital<'a, T> where T: ComplexFloat<Real = f64> + Lapack {}

// -----
// Debug
// -----
impl<'a, T> fmt::Debug for MolecularOrbital<'a, T>
where
    T: fmt::Debug + ComplexFloat + Lapack,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "MolecularOrbital[{:?} (spin index {}): coefficient array of length {}]",
            self.spin_constraint,
            self.spin_index,
            self.coefficients.len()
        )?;
        Ok(())
    }
}

// -------
// Display
// -------
impl<'a, T> fmt::Display for MolecularOrbital<'a, T>
where
    T: fmt::Display + ComplexFloat + Lapack,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "MolecularOrbital[{:?} (spin index {}): coefficient array of length {}]",
            self.spin_constraint,
            self.spin_index,
            self.coefficients.len()
        )?;
        Ok(())
    }
}