1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
//! Implementation of symmetry analysis for axial vectors.

use std::fmt;
use std::ops::Mul;

use anyhow::{self, format_err, Context};
use approx;
use derive_builder::Builder;
use itertools::Itertools;
use log;
use ndarray::{Array1, Array2, Axis, Ix2};
use ndarray_linalg::{
    eig::Eig,
    eigh::Eigh,
    types::{Lapack, Scalar},
    UPLO,
};
use num_complex::{Complex, ComplexFloat};
use num_traits::{Float, Zero};

use crate::analysis::{
    fn_calc_xmat_complex, fn_calc_xmat_real, EigenvalueComparisonMode, Orbit, OrbitIterator,
    Overlap, RepAnalysis,
};
use crate::auxiliary::misc::complex_modified_gram_schmidt;
use crate::chartab::chartab_group::CharacterProperties;
use crate::chartab::{DecompositionError, SubspaceDecomposable};
use crate::symmetry::symmetry_element::symmetry_operation::SpecialSymmetryTransformation;
use crate::symmetry::symmetry_group::SymmetryGroupProperties;
use crate::symmetry::symmetry_transformation::{SymmetryTransformable, SymmetryTransformationKind};
use crate::target::tensor::axialvector::AxialVector3;

// -------
// Overlap
// -------

impl<T> Overlap<T, Ix2> for AxialVector3<T>
where
    T: Lapack
        + ComplexFloat<Real = <T as Scalar>::Real>
        + fmt::Debug
        + Mul<<T as ComplexFloat>::Real, Output = T>,
    <T as ComplexFloat>::Real: fmt::Debug
        + approx::RelativeEq<<T as ComplexFloat>::Real>
        + approx::AbsDiffEq<Epsilon = <T as Scalar>::Real>,
{
    fn complex_symmetric(&self) -> bool {
        false
    }

    /// Computes the overlap between two axial vectors.
    fn overlap(
        &self,
        other: &Self,
        metric: Option<&Array2<T>>,
        _: Option<&Array2<T>>,
    ) -> Result<T, anyhow::Error> {
        let s_components = Array1::from_iter(self.components.iter().cloned());
        let o_components = Array1::from_iter(other.components.iter().cloned());
        let ov = if let Some(s) = metric {
            s_components
                .t()
                .mapv(|x| x.conj())
                .dot(s)
                .dot(&o_components)
        } else {
            s_components.t().mapv(|x| x.conj()).dot(&o_components)
        };
        Ok(ov)
    }

    /// Returns the mathematical definition of the overlap between two axial vectors.
    fn overlap_definition(&self) -> String {
        let k = if self.complex_symmetric() { "κ " } else { "" };
        format!("⟨{k}v_1|v_2⟩ = [{k}v_1]† g v_2    where g is an optional metric")
    }
}

// =========================
// AxialVector3SymmetryOrbit
// =========================

// -----------------
// Struct definition
// -----------------

/// Structure to manage symmetry orbits (*i.e.* orbits generated by symmetry groups) of axial
/// vectors.
#[derive(Builder, Clone)]
pub struct AxialVector3SymmetryOrbit<'a, G, T>
where
    G: SymmetryGroupProperties,
    T: ComplexFloat + fmt::Debug + Lapack,
    AxialVector3<T>: SymmetryTransformable,
{
    /// The generating symmetry group.
    group: &'a G,

    /// The origin molecular orbital of the orbit.
    origin: &'a AxialVector3<T>,

    /// The threshold for determining if calculated multiplicities in representation analysis are
    /// integral.
    integrality_threshold: <T as ComplexFloat>::Real,

    /// The threshold for determining zero eigenvalues in the orbit overlap matrix.
    pub(crate) linear_independence_threshold: <T as ComplexFloat>::Real,

    /// The kind of transformation determining the way the symmetry operations in `group` act on
    /// [`Self::origin`].
    symmetry_transformation_kind: SymmetryTransformationKind,

    /// The overlap matrix between the symmetry-equivalent axial vectors in the orbit.
    #[builder(setter(skip), default = "None")]
    smat: Option<Array2<T>>,

    /// The eigenvalues of the overlap matrix between the symmetry-equivalent axial vectors in the
    /// orbit.
    #[builder(setter(skip), default = "None")]
    pub(crate) smat_eigvals: Option<Array1<T>>,

    /// The $`\mathbf{X}`$ matrix for the overlap matrix between the symmetry-equivalent axial
    /// vectors in the orbit.
    ///
    /// See [`RepAnalysis::xmat`] for further information.
    #[builder(setter(skip), default = "None")]
    xmat: Option<Array2<T>>,

    /// An enumerated type specifying the comparison mode for filtering out orbit overlap
    /// eigenvalues.
    pub(crate) eigenvalue_comparison_mode: EigenvalueComparisonMode,
}

// ----------------------------
// Struct method implementation
// ----------------------------

impl<'a, G, T> AxialVector3SymmetryOrbit<'a, G, T>
where
    G: SymmetryGroupProperties + Clone,
    T: ComplexFloat + fmt::Debug + Lapack,
    AxialVector3<T>: SymmetryTransformable,
{
    /// Returns a builder to construct a new [`AxialVector3SymmetryOrbit`] structure.
    pub fn builder() -> AxialVector3SymmetryOrbitBuilder<'a, G, T> {
        AxialVector3SymmetryOrbitBuilder::default()
    }
}

impl<'a, G> AxialVector3SymmetryOrbit<'a, G, f64>
where
    G: SymmetryGroupProperties,
{
    fn_calc_xmat_real!(
        /// Calculates the $`\mathbf{X}`$ matrix for real and symmetric overlap matrix
        /// $`\mathbf{S}`$ between the symmetry-equivalent axial vectors in the orbit.
        ///
        /// The resulting $`\mathbf{X}`$ is stored in the orbit.
        ///
        /// # Arguments
        ///
        /// * `preserves_full_rank` - If `true`, when $`\mathbf{S}`$ is already of full rank, then
        /// $`\mathbf{X}`$ is set to be the identity matrix to avoid mixing the orbit axial vectors.
        /// If `false`, $`\mathbf{X}`$ also orthogonalises $`\mathbf{S}`$ even when it is already of
        /// full rank.
        pub calc_xmat
    );
}

impl<'a, G, T> AxialVector3SymmetryOrbit<'a, G, Complex<T>>
where
    G: SymmetryGroupProperties,
    T: Float + Scalar<Complex = Complex<T>>,
    Complex<T>: ComplexFloat<Real = T> + Scalar<Real = T, Complex = Complex<T>> + Lapack,
    AxialVector3<Complex<T>>: SymmetryTransformable + Overlap<Complex<T>, Ix2>,
{
    fn_calc_xmat_complex!(
        /// Calculates the $`\mathbf{X}`$ matrix for complex and symmetric or Hermitian overlap
        /// matrix $`\mathbf{S}`$ between the symmetry-equivalent axial vectors in the orbit.
        ///
        /// The resulting $`\mathbf{X}`$ is stored in the orbit.
        ///
        /// # Arguments
        ///
        /// * `preserves_full_rank` - If `true`, when $`\mathbf{S}`$ is already of full rank, then
        /// $`\mathbf{X}`$ is set to be the identity matrix to avoid mixing the orbit axial vectors.
        /// If `false`, $`\mathbf{X}`$ also orthogonalises $`\mathbf{S}`$ even when it is already of
        /// full rank.
        pub calc_xmat
    );
}

// ---------------------
// Trait implementations
// ---------------------

// ~~~~~
// Orbit
// ~~~~~

impl<'a, G, T> Orbit<G, AxialVector3<T>> for AxialVector3SymmetryOrbit<'a, G, T>
where
    G: SymmetryGroupProperties,
    T: ComplexFloat + fmt::Debug + Lapack,
    AxialVector3<T>: SymmetryTransformable,
{
    type OrbitIter = OrbitIterator<'a, G, AxialVector3<T>>;

    fn group(&self) -> &G {
        self.group
    }

    fn origin(&self) -> &AxialVector3<T> {
        self.origin
    }

    fn iter(&self) -> Self::OrbitIter {
        OrbitIterator::new(
            self.group,
            self.origin,
            match self.symmetry_transformation_kind {
                SymmetryTransformationKind::Spatial => |op, axvec| {
                    axvec.sym_transform_spatial(op).with_context(|| {
                        format!("Unable to apply `{op}` spatially on the origin axial vector")
                    })
                },
                SymmetryTransformationKind::SpatialWithSpinTimeReversal => |op, axvec| {
                    axvec.sym_transform_spatial_with_spintimerev(op).with_context(|| {
                        format!("Unable to apply `{op}` spatially (with potentially direction-reversing time reversal) on the origin axial vector")
                    })
                },
                SymmetryTransformationKind::Spin => |op, axvec| {
                    axvec.sym_transform_spin(op).with_context(|| {
                        format!("Unable to apply `{op}` spin-wise on the origin axial vector")
                    })
                },
                SymmetryTransformationKind::SpinSpatial => |op, axvec| {
                    axvec.sym_transform_spin_spatial(op).with_context(|| {
                        format!("Unable to apply `{op}` spin-spatially on the origin axial vector")
                    })
                },
            },
        )
    }
}

// ~~~~~~~~~~~
// RepAnalysis
// ~~~~~~~~~~~

impl<'a, G, T> RepAnalysis<G, AxialVector3<T>, T, Ix2> for AxialVector3SymmetryOrbit<'a, G, T>
where
    G: SymmetryGroupProperties,
    G::CharTab: SubspaceDecomposable<T>,
    T: Lapack
        + ComplexFloat<Real = <T as Scalar>::Real>
        + fmt::Debug
        + Mul<<T as ComplexFloat>::Real, Output = T>,
    <T as ComplexFloat>::Real: fmt::Debug
        + Zero
        + approx::RelativeEq<<T as ComplexFloat>::Real>
        + approx::AbsDiffEq<Epsilon = <T as Scalar>::Real>,
    AxialVector3<T>: SymmetryTransformable,
{
    fn set_smat(&mut self, smat: Array2<T>) {
        self.smat = Some(smat)
    }

    fn smat(&self) -> Option<&Array2<T>> {
        self.smat.as_ref()
    }

    fn xmat(&self) -> &Array2<T> {
        self.xmat
            .as_ref()
            .expect("Orbit overlap orthogonalisation matrix not found.")
    }

    fn norm_preserving_scalar_map(&self, i: usize) -> Result<fn(T) -> T, anyhow::Error> {
        if self.origin.complex_symmetric() {
            Err(format_err!("`norm_preserving_scalar_map` is currently not implemented for complex symmetric overlaps."))
        } else {
            if self
                .group
                .get_index(i)
                .unwrap_or_else(|| panic!("Group operation index `{i}` not found."))
                .contains_time_reversal()
            {
                Ok(ComplexFloat::conj)
            } else {
                Ok(|x| x)
            }
        }
    }

    fn integrality_threshold(&self) -> <T as ComplexFloat>::Real {
        self.integrality_threshold
    }

    fn eigenvalue_comparison_mode(&self) -> &EigenvalueComparisonMode {
        &self.eigenvalue_comparison_mode
    }

    /// Reduces the representation or corepresentation spanned by the axial vectors in the
    /// orbit to a direct sum of the irreducible representations or corepresentations of the
    /// generating symmetry group.
    ///
    /// # Returns
    ///
    /// The decomposed result.
    ///
    /// # Errors
    ///
    /// Errors if the decomposition fails, *e.g.* because one or more calculated multiplicities
    /// are non-integral.
    fn analyse_rep(
        &self,
    ) -> Result<
        <<G as CharacterProperties>::CharTab as SubspaceDecomposable<T>>::Decomposition,
        DecompositionError,
    > {
        let chis = self
            .calc_characters()
            .map_err(|err| DecompositionError(err.to_string()))?;
        let res = self.group().character_table().reduce_characters(
            &chis.iter().map(|(cc, chi)| (cc, *chi)).collect::<Vec<_>>(),
            self.integrality_threshold(),
        );
        res
    }
}