Function qsym2::angmom::sh_conversion::complexc
source · pub fn complexc(
lpureqns: (u32, i32),
lcartqns: (u32, u32, u32),
csphase: bool,
) -> Complex<f64>
Expand description
Obtain the complex coefficients $c(l, m_l, n, l_x, l_y, l_z)
$ based on Equation 15 of
Schlegel, H. B. & Frisch, M. J. Transformation between Cartesian and pure spherical harmonic
Gaussians. International Journal of Quantum Chemistry 54, 83–87 (1995),
DOI, but more generalised
for $l \leq l_{\mathrm{cart}} = l_x + l_y + l_z
$.
Let $\tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r})
$ be a complex solid
harmonic Gaussian as defined in Equation 1 of
the above reference with $n = l_{\mathrm{cart}}
$, and let
$g(\alpha, l_x, l_y, l_z, \mathbf{r})
$ be a Cartesian Gaussian as defined in
Equation 2 of the above reference.
The complex coefficients $c(l, m_l, n, l_x, l_y, l_z)
$ effect the transformation
\tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r})
= \sum_{l_x+l_y+l_z=l_{\mathrm{cart}}}
c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
g(\alpha, l_x, l_y, l_z, \mathbf{r})
and are given by
c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
= \frac{\tilde{N}(l_{\mathrm{cart}}, \alpha)}{N(l_x, l_y, l_z, \alpha)}
\tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z).
The normalisation constants $\tilde{N}(l_{\mathrm{cart}}, \alpha)
$
and $N(l_x, l_y, l_z, \alpha)
$ are given in Equations 8 and 9 of
the above reference, and for $n = l_{\mathrm{cart}}
$, this ratio turns out to be
independent of $\alpha
$.
The more general form of $\tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
$ has been
derived to be
\tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
= \frac{\lambda_{\mathrm{cs}}}{2^l l!}
\sqrt{\frac{(2l+1)(l-\lvert m_l \rvert)!}{4\pi(l+\lvert m_l \rvert)!}}
\sum_{i=0}^{(l-\lvert m_l \rvert)/2}
{l\choose i} \frac{(-1)^i(2l-2i)!}{(l-\lvert m_l \rvert -2i)!}\\
\sum_{p=0}^{\lvert m_l \rvert} {{\lvert m_l \rvert} \choose p}
(\pm \mathbb{i})^{\lvert m_l \rvert-p}
\sum_{q=0}^{\Delta l/2} {{\Delta l/2} \choose q} {i \choose j_q}
\sum_{k=0}^{j_q} {q \choose t_{pk}} {j_q \choose k}
where $+\mathbb{i}
$ applies for $m_l > 0
$, $-\mathbb{i}
$
for $m_l \le 0
$, $\lambda_{\mathrm{cs}}
$ is the Condon–Shortley
phase given by
\lambda_{\mathrm{cs}} =
\begin{cases}
(-1)^{m_l} & m_l > 0 \\
1 & m_l \leq 0
\end{cases}
and
t_{pk} = \frac{l_x-p-2k}{2} \quad \textrm{and} \quad
j_q = \frac{l_x+l_y-\lvert m_l \rvert-2q}{2}.
If $\Delta l
$ is odd, $\tilde{c}(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
$ must vanish.
When $t_{pk}
$ or $j_q
$ is a half-integer, the inner sum in which it is involved
evaluates to zero.
§Arguments
lpureqns
- A tuple of $(l, m_l)
$ specifying the quantum numbers for the spherical harmonic component of the solid harmonic Gaussian.lcartqns
- A tuple of $(l_x, l_y, l_z)
$ specifying the exponents of the Cartesian components of the Cartesian Gaussian.csphase
- Iftrue
, the Condon–Shortley phase will be used as defined above. Iffalse
, this phase will be set to unity.
§Returns
The complex factor $c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
$.
§Panics
Panics when any required factorials cannot be computed.