Function qsym2::angmom::sh_rotation_3d::rmat
source · pub fn rmat(angle: f64, axis: Vector3<f64>) -> Array2<f64>
Expand description
Returns the representation matrix $\mathbf{R}
$ for a rotation in the basis of the coordinate
functions $(y, z, x)
$.
Let $\hat{R}(\phi, \hat{\mathbf{n}})
$ be a rotation parametrised by the angle $\phi
$ and
axis $\hat{\mathbf{n}}
$. The corresponding representation matrix
$\mathbf{R}(\phi, \hat{\mathbf{n}})
$ is defined as
\hat{R}(\phi, \hat{\mathbf{n}})\ (y, z, x)
= (y, z, x) \mathbf{R}(\phi, \hat{\mathbf{n}})
See Section 2-4 of Altmann, S. L. Rotations, Quaternions, and Double Groups. (Dover
Publications, Inc., 2005) for a detailed discussion on how $(y, z, x)
$ should be considered
as coordinate functions.
§Arguments
angle
- The angle $\phi
$ of the rotation in radians. A positive rotation is an anticlockwise rotation when looking downaxis
.axis
- A space-fixed vector defining the axis of rotation. The supplied vector will be normalised.
§Returns
The representation matrix $\mathbf{R}(\phi, \hat{\mathbf{n}})
$.
§Panics
Panics when a three-dimensional rotation matrix cannot be constructed for angle
and axis
.