Function qsym2::angmom::spinor_rotation_3d::dmat_angleaxis
source · pub fn dmat_angleaxis(
angle: f64,
axis: Vector3<f64>,
increasingm: bool,
) -> Array2<Complex<f64>>
Expand description
Returns the Wigner rotation matrix for $j = 1/2
$ whose elements are defined by
\hat{R}(\phi\hat{\mathbf{n}}) \ket{\tfrac{1}{2}m}
= \sum_{m'} \ket{\tfrac{1}{2}m'} D^{(1/2)}_{m'm}(\phi\hat{\mathbf{n}}).
The parametrisation of $\mathbf{D}^{(1/2)}
$ by $\phi
$ and $\hat{\mathbf{n}}
$ is given
in (4-9.12) of Altmann, S. L. Rotations, Quaternions, and Double Groups. (Dover
Publications, Inc., 2005).
§Arguments
angle
- The angle $\phi
$ of the rotation in radians. A positive rotation is an anticlockwise rotation when looking downaxis
.axis
- A space-fixed vector defining the axis of rotation. The supplied vector will be normalised.increasingm
- Iftrue
, the rows and columns of $\mathbf{D}^{(1/2)}
$ are arranged in increasing order of $m_l = -l, \ldots, l
$. Iffalse
, the order is reversed: $m_l = l, \ldots, -l
$. The recommended default isfalse
, in accordance with convention.
§Returns
The matrix $\mathbf{D}^{(1/2)}(\phi\hat{\mathbf{n}})
$.