Function qsym2::angmom::spinor_rotation_3d::dmat_euler
source · pub fn dmat_euler(
euler_angles: (f64, f64, f64),
increasingm: bool,
) -> Array2<Complex<f64>>
Expand description
Returns the Wigner rotation matrix for $j = 1/2
$ whose elements are defined by
\hat{R}(\alpha, \beta, \gamma) \ket{\tfrac{1}{2}m}
= \sum_{m'} \ket{\tfrac{1}{2}m'} D^{(1/2)}_{m'm}(\alpha, \beta, \gamma).
§Arguments
euler_angles
- A triplet of Euler angles $(\alpha, \beta, \gamma)
$ in radians, following the Whitaker convention, i.e. $z_2-y-z_1
$ (extrinsic rotations).increasingm
- Iftrue
, the rows and columns of $\mathbf{D}^{(1/2)}
$ are arranged in increasing order of $m_l = -l, \ldots, l
$. Iffalse
, the order is reversed: $m_l = l, \ldots, -l
$. The recommended default isfalse
, in accordance with convention.
§Returns
The matrix $\mathbf{D}^{(1/2)}(\alpha, \beta, \gamma)
$.