Function qsym2::angmom::spinor_rotation_3d::dmat_euler_gen_element

source ·
pub fn dmat_euler_gen_element(
    twoj: u32,
    mdashi: usize,
    mi: usize,
    euler_angles: (f64, f64, f64),
) -> Complex<f64>
Expand description

Returns an element in the Wigner rotation matrix for an integral or half-integral jj, defined by

R^(α,β,γ)jm=mjmDmm(j)(α,β,γ).\hat{R}(\alpha, \beta, \gamma) \ket{jm}
= \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\alpha, \beta, \gamma).

The explicit expression for the elements of D(1/2)(α,β,γ)\mathbf{D}^{(1/2)}(\alpha, \beta, \gamma) is given in Professor Anthony Stone’s graduate lecture notes on Angular Momentum at the University of Cambridge in 2006.

§Arguments

  • twoj - Two times the angular momentum 2j2j. If this is even, jj is integral; otherwise, jj is half-integral.
  • mdashi - Index for mm' given by m+12m'+\tfrac{1}{2}.
  • mi - Index for mm given by m+12m+\tfrac{1}{2}.
  • euler_angles - A triplet of Euler angles (α,β,γ)(\alpha, \beta, \gamma) in radians, following the Whitaker convention, i.e. z2yz1z_2-y-z_1 (extrinsic rotations).

§Returns

The element Dmm(j)(α,β,γ)D^{(j)}_{m'm}(\alpha, \beta, \gamma).