pub fn dmat_euler_gen_element(
twoj: u32,
mdashi: usize,
mi: usize,
euler_angles: (f64, f64, f64),
) -> Complex<f64>Expand description
Returns an element in the Wigner rotation matrix for an integral or half-integral
$j$, defined by
\hat{R}(\alpha, \beta, \gamma) \ket{jm}
= \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\alpha, \beta, \gamma)where $-\pi \le \alpha \le \pi$, $0 \le \beta \le \pi$, $-\pi \le \gamma \le \pi$.
The explicit expression for the elements of $\mathbf{D}^{(j)}(\alpha, \beta, \gamma)$
is given in Professor Anthony Stone’s graduate lecture notes on Angular Momentum at the
University of Cambridge in 2006.
§Arguments
twoj- Two times the angular momentum $2j$. If this is even, $j$ is integral; otherwise, $j$ is half-integral.mdashi- Index for $m'$ given by $m'+\tfrac{1}{2}$.mi- Index for $m$ given by $m+\tfrac{1}{2}$.euler_angles- A triplet of Euler angles $(\alpha, \beta, \gamma)$ in radians, following the Whitaker convention, i.e. $z_2-y-z_1$ (extrinsic rotations).
§Returns
The element $D^{(j)}_{m'm}(\alpha, \beta, \gamma)$.