Function qsym2::angmom::spinor_rotation_3d::dmat_euler_gen_element
source · pub fn dmat_euler_gen_element(
twoj: u32,
mdashi: usize,
mi: usize,
euler_angles: (f64, f64, f64),
) -> Complex<f64>
Expand description
Returns an element in the Wigner rotation matrix for an integral or half-integral
$j
$, defined by
\hat{R}(\alpha, \beta, \gamma) \ket{jm}
= \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\alpha, \beta, \gamma).
The explicit expression for the elements of $\mathbf{D}^{(1/2)}(\alpha, \beta, \gamma)
$
is given in Professor Anthony Stone’s graduate lecture notes on Angular Momentum at the
University of Cambridge in 2006.
§Arguments
twoj
- Two times the angular momentum $2j
$. If this is even, $j
$ is integral; otherwise, $j
$ is half-integral.mdashi
- Index for $m'
$ given by $m'+\tfrac{1}{2}
$.mi
- Index for $m
$ given by $m+\tfrac{1}{2}
$.euler_angles
- A triplet of Euler angles $(\alpha, \beta, \gamma)
$ in radians, following the Whitaker convention, i.e. $z_2-y-z_1
$ (extrinsic rotations).
§Returns
The element $D^{(j)}_{m'm}(\alpha, \beta, \gamma)
$.