pub fn complexcinv(
    lcartqns: (u32, u32, u32),
    lpureqns: (u32, i32),
    csphase: bool,
) -> Complex<f64>Expand description
Computes the inverse complex coefficients $c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})$
based on Equation 18 of Schlegel, H. B. & Frisch, M. J. Transformation between
Cartesian and pure spherical harmonic Gaussians. International Journal of Quantum Chemistry
54, 83–87 (1995), DOI, but more generalised for
$l \leq l_{\mathrm{cart}} = l_x + l_y + l_z$.
Let $\tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r})$ be a complex solid
harmonic Gaussian as defined in Equation 1 of the above reference with
$n = l_{\mathrm{cart}}$, and let $g(\alpha, l_x, l_y, l_z, \mathbf{r})$ be a Cartesian
Gaussian as defined in Equation 2 of the above reference. The inverse complex coefficients
$c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})$ effect the inverse transformation
g(\alpha, l_x, l_y, l_z, \mathbf{r})
= \sum_{l \le l_{\mathrm{cart}} = l_x+l_y+l_z} \sum_{m_l = -l}^{l}
    c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})
    \tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r}).§Arguments
- lcartqns- A tuple of $- (l_x, l_y, l_z)$ specifying the exponents of the Cartesian components of the Cartesian Gaussian.
- lpureqns- A tuple of $- (l, m_l)$ specifying the quantum numbers for the spherical harmonic component of the solid harmonic Gaussian.
- csphase- If- true, the Condon–Shortley phase will be used as defined in- complexc. If- false, this phase will be set to unity.
§Returns
$c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})$.