Function qsym2::angmom::sh_conversion::complexcinv
source · pub fn complexcinv(
lcartqns: (u32, u32, u32),
lpureqns: (u32, i32),
csphase: bool,
) -> Complex<f64>
Expand description
Computes the inverse complex coefficients $c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})
$
based on Equation 18 of Schlegel, H. B. & Frisch, M. J. Transformation between
Cartesian and pure spherical harmonic Gaussians. International Journal of Quantum Chemistry
54, 83–87 (1995), DOI, but more generalised for
$l \leq l_{\mathrm{cart}} = l_x + l_y + l_z
$.
Let $\tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r})
$ be a complex solid
harmonic Gaussian as defined in Equation 1 of the above reference with
$n = l_{\mathrm{cart}}
$, and let $g(\alpha, l_x, l_y, l_z, \mathbf{r})
$ be a Cartesian
Gaussian as defined in Equation 2 of the above reference. The inverse complex coefficients
$c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})
$ effect the inverse transformation
g(\alpha, l_x, l_y, l_z, \mathbf{r})
= \sum_{l \le l_{\mathrm{cart}} = l_x+l_y+l_z} \sum_{m_l = -l}^{l}
c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})
\tilde{g}(\alpha, l, m_l, l_{\mathrm{cart}}, \mathbf{r}).
§Arguments
lcartqns
- A tuple of $(l_x, l_y, l_z)
$ specifying the exponents of the Cartesian components of the Cartesian Gaussian.lpureqns
- A tuple of $(l, m_l)
$ specifying the quantum numbers for the spherical harmonic component of the solid harmonic Gaussian.csphase
- Iftrue
, the Condon–Shortley phase will be used as defined incomplexc
. Iffalse
, this phase will be set to unity.
§Returns
$c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})
$.