pub fn sh_c2r_mat(
l: u32,
csphase: bool,
pureorder: &PureOrder,
) -> Array2<Complex<f64>>Expand description
Obtains the transformation matrix $\boldsymbol{\Upsilon}^{(l)}$ allowing complex spherical
harmonics to be expressed as linear combinations of real spherical harmonics.
Let $Y_{lm}$ be a real spherical harmonic of degree $l$. Then, a complex spherical
harmonic of degree $l$ and order $m$ is given by
Y_l^m =
\begin{cases}
\frac{\lambda_{\mathrm{cs}}}{\sqrt{2}}
\left(Y_{l\lvert m \rvert}
- \mathbb{i} Y_{l,-\lvert m \rvert}\right)
& \mathrm{if}\ m < 0 \\
Y_{l0} & \mathrm{if}\ m = 0 \\
\frac{\lambda_{\mathrm{cs}}}{\sqrt{2}}
\left(Y_{l\lvert m \rvert}
+ \mathbb{i} Y_{l,-\lvert m \rvert}\right)
& \mathrm{if}\ m > 0 \\
\end{cases}where $\lambda_{\mathrm{cs}}$ is the Condon–Shortley phase as defined in complexc.
The linear combination coefficients can then be gathered into a square matrix
$\boldsymbol{\Upsilon}^{(l)}$ of dimensions $(2l+1)\times(2l+1)$ such that
Y_l^m = \sum_{m'} Y_{lm'} \Upsilon^{(l)}_{m'm}.§Arguments
l- The spherical harmonic degree.csphase- Iftrue, $\lambda_{\mathrm{cs}}$ is as defined incomplexc. Iffalse, $\lambda_{\mathrm{cs}} = 1$.pureorder- APureOrderstruct giving the ordering of the components of the pure Gaussians.
§Returns
The $\boldsymbol{\Upsilon}^{(l)}$ matrix.