pub fn dmat_euler_gen(
twoj: u32,
euler_angles: (f64, f64, f64),
increasingm: bool,
) -> Array2<Complex<f64>>
Expand description
Returns the Wigner rotation matrix in the Euler-angle parametrisation for any integral or
half-integral $j
$ whose elements are defined by
\hat{R}(\alpha, \beta, \gamma) \ket{jm}
= \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\alpha, \beta, \gamma)
and given in dmat_euler_gen_element
, where $-\pi \le \alpha \le \pi
$,
$0 \le \beta \le \pi
$, $-\pi \le \gamma \le \pi
$.
§Arguments
twoj
- Two times the angular momentum $2j
$. If this is even, $j
$ is integral; otherwise, $j
$ is half-integral.euler_angles
- A triplet of Euler angles $(\alpha, \beta, \gamma)
$ in radians, following the Whitaker convention, i.e. $z_2-y-z_1
$ (extrinsic rotations).increasingm
- Iftrue
, the rows and columns of $\mathbf{D}^{(j)}
$ are arranged in increasing order of $m_l = -l, \ldots, l
$. Iffalse
, the order is reversed: $m_l = l, \ldots, -l
$. The recommended default isfalse
, in accordance with convention.
§Returns
The matrix $\mathbf{D}^{(j)}(\alpha, \beta, \gamma)
$.