Function qsym2::angmom::spinor_rotation_3d::dmat_euler_gen

source ·
pub fn dmat_euler_gen(
    twoj: u32,
    euler_angles: (f64, f64, f64),
    increasingm: bool,
) -> Array2<Complex<f64>>
Expand description

Returns the Wigner rotation matrix in the Euler-angle parametrisation for any integral or half-integral $j$ whose elements are defined by

\hat{R}(\alpha, \beta, \gamma) \ket{jm}
= \sum_{m'} \ket{jm'} D^{(j)}_{m'm}(\alpha, \beta, \gamma).

and given in dmat_euler_gen_element.

§Arguments

  • twoj - Two times the angular momentum $2j$. If this is even, $j$ is integral; otherwise, $j$ is half-integral.
  • euler_angles - A triplet of Euler angles $(\alpha, \beta, \gamma)$ in radians, following the Whitaker convention, i.e. $z_2-y-z_1$ (extrinsic rotations).
  • increasingm - If true, the rows and columns of $\mathbf{D}^{(j)}$ are arranged in increasing order of $m_l = -l, \ldots, l$. If false, the order is reversed: $m_l = l, \ldots, -l$. The recommended default is false, in accordance with convention.

§Returns

The matrix $\mathbf{D}^{(j)}(\alpha, \beta, \gamma)$.