pub fn sh_cart2cl_mat(
l: u32,
lcart: u32,
cartorder: &CartOrder,
csphase: bool,
pureorder: &PureOrder,
) -> Array2<Complex<f64>>Expand description
Obtains the matrix $\mathbf{V}^{(l, l_{\mathrm{cart}})}$ containing linear combination
coefficients of complex solid harmonic Gaussians of a specific degree in the expansion of
Cartesian Gaussians, i.e., briefly,
\mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
= \tilde{\mathbf{g}}^{\mathsf{T}}(l)
\ \mathbf{V}^{(l, l_{\mathrm{cart}})}.Let $\tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})$ be a complex solid harmonic
Gaussian as defined in Equation 1 of Schlegel, H. B. & Frisch, M. J. Transformation between
Cartesian and pure spherical harmonic Gaussians. International Journal of Quantum Chemistry
54, 83–87 (1995), DOI with
$n = l_{\mathrm{cart}}$, and let $g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})$ be a
Cartesian Gaussian as defined in Equation 2 of the above reference. Here, $\lambda$ is a
single index labelling a complex solid harmonic Gaussian of spherical harmonic degree $l$
and order $m_l$, and $\lambda_{\mathrm{cart}}$ a single index labelling a Cartesian
Gaussian of degrees $(l_x, l_y, l_z)$ such that $l_x + l_y + l_z = l_{\mathrm{cart}}$.
We can then write
g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
= \sum_{\substack{\lambda\\ l \leq l_{\mathrm{cart}}}}
\tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
V^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}}where $V^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}}$ is given by the inverse
complex coefficients
V^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}} =
c^{-1}(l_x, l_y, l_z, l, m_l, l_{\mathrm{cart}})defined in complexcinv.
We can order the rows $\lambda$ of $\mathbf{V}^{(l_{\mathrm{cart}})}$ that have the same
$l$ into rectangular blocks of dimensions
$(2l+1) \times \frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2)$
which give contributions from complex solid harmonic Gaussians of a particular degree $l$.
We denote these blocks $\mathbf{V}^{(l, l_{\mathrm{cart}})}$.
They contain only zero elements if $l$ and $l_{\mathrm{cart}}$ have different parities.
§Arguments
l- The degree of the complex spherical harmonic factor in the solid harmonic Gaussian.lcart- The total Cartesian degree for the Cartesian Gaussians and also for the radial part of the solid harmonic Gaussian.cartorder- ACartOrderstruct giving the ordering of the components of the Cartesian Gaussians.csphase- Set totrueto use the Condon–Shortley phase in the calculations of the $c^{-1}$ coefficients. Seecomplexcandcomplexcinvfor more details.pureorder- APureOrderstruct giving the ordering of the components of the pure Gaussians.
§Returns
The $\mathbf{V}^{(l, l_{\mathrm{cart}})}$ block.