Function qsym2::angmom::sh_conversion::sh_cl2cart_mat
source · pub fn sh_cl2cart_mat(
lcart: u32,
l: u32,
cartorder: &CartOrder,
csphase: bool,
pureorder: &PureOrder,
) -> Array2<Complex<f64>>
Expand description
Obtains the matrix $\mathbf{U}^{(l_{\mathrm{cart}}, l)}
$ containing linear combination
coefficients of Cartesian Gaussians in the expansion of a complex solid harmonic Gaussian,
i.e., briefly,
\tilde{\mathbf{g}}^{\mathsf{T}}(l)
= \mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
\ \mathbf{U}^{(l_{\mathrm{cart}}, l)}.
Let $\tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
$ be a complex solid harmonic
Gaussian as defined in Equation 1 of Schlegel, H. B. & Frisch, M. J. Transformation between
Cartesian and pure spherical harmonic Gaussians. International Journal of Quantum Chemistry
54, 83–87 (1995), DOI with
$n = l_{\mathrm{cart}}
$, and let $g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
$ be a
Cartesian Gaussian as defined in Equation 2 of the above reference.
Here, $\lambda
$ is a single index labelling a complex solid harmonic Gaussian of spherical
harmonic degree $l
$ and order $m_l
$, and $\lambda_{\mathrm{cart}}
$ a single index
labelling a Cartesian Gaussian of degrees $(l_x, l_y, l_z)
$ such that
$l_x + l_y + l_z = l_{\mathrm{cart}}
$. We can then write
\tilde{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
= \sum_{\lambda_{\mathrm{cart}}}
g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
U^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda}
where $U^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda}
$
is given by the complex coefficients
U^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda} =
c(l, m_l, l_{\mathrm{cart}}, l_x, l_y, l_z)
defined in complexc
.
$\mathbf{U}^{(l_{\mathrm{cart}}, l)}
$ has dimensions
$\frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2) \times (2l+1)
$ and contains only
zero elements if $l
$ and $l_{\mathrm{cart}}
$ have different parities.
It can be verified that
$\mathbf{V}^{(l,l_{\mathrm{cart}})} \ \mathbf{U}^{(l_{\mathrm{cart}}, l)} = \boldsymbol{I}_{2l+1}
$, where
$\mathbf{V}^{(l,l_{\mathrm{cart}})}
$ is given in sh_cart2cl_mat
.
§Arguments
lcart
- The total Cartesian degree for the Cartesian Gaussians and also for the radial part of the solid harmonic Gaussian.l
- The degree of the complex spherical harmonic factor in the solid harmonic Gaussian.cartorder
- ACartOrder
struct giving the ordering of the components of the Cartesian Gaussians.csphase
- Set totrue
to use the Condon–Shortley phase in the calculations of the $c
$ coefficients. Seecomplexc
for more details.pureorder
- APureOrder
struct giving the ordering of the components of the pure Gaussians.
§Returns
The $\mathbf{U}^{(l_{\mathrm{cart}}, l)}
$ matrix.