pub fn sh_rl2cart_mat(
lcart: u32,
l: u32,
cartorder: &CartOrder,
csphase: bool,
pureorder: &PureOrder,
) -> Array2<f64>Expand description
Obtain the matrix $\mathbf{W}^{(l_{\mathrm{cart}}, l)}$ containing linear combination
coefficients of Cartesian Gaussians in the expansion of a real solid harmonic Gaussian, i.e.,
briefly,
\bar{\mathbf{g}}^{\mathsf{T}}(l)
= \mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
\ \mathbf{W}^{(l_{\mathrm{cart}}, l)}.Let $\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})$ be
a real solid harmonic Gaussian defined in a similar manner to Equation 1 of Schlegel, H. B.
& Frisch, M. J. Transformation between Cartesian and pure spherical harmonic Gaussians.
International Journal of Quantum Chemistry 54, 83–87 (1995),
DOI with $n = l_{\mathrm{cart}}$ but with real
rather than complex spherical harmonic factors, and let
$g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})$ be a Cartesian Gaussian as defined in
Equation 2 of the above reference. Here, $\lambda$ is a single index labelling a complex
solid harmonic Gaussian of spherical harmonic degree $l$ and order $m_l$, and
$\lambda_{\mathrm{cart}}$ a single index labelling a Cartesian Gaussian of degrees
$(l_x, l_y, l_z)$ such that $l_x + l_y + l_z = l_{\mathrm{cart}}$. We can then write
\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
= \sum_{\lambda_{\mathrm{cart}}}
g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
W^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda}.$\mathbf{W}^{(l_{\mathrm{cart}}, l)}$ is given by
\mathbf{W}^{(l_{\mathrm{cart}}, l)}
= \mathbf{U}^{(l_{\mathrm{cart}}, l)}
\boldsymbol{\Upsilon}^{(l)\dagger},where $\boldsymbol{\Upsilon}^{(l)\dagger}$ is defined in sh_r2c_mat and
$\mathbf{U}^{(l_{\mathrm{cart}}, l)}$ in sh_cl2cart_mat.
$\mathbf{W}^{(l_{\mathrm{cart}}, l)}$ must be real.
$\mathbf{W}^{(l_{\mathrm{cart}}, l)}$ has dimensions
$\frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2) \times (2l+1)$ and contains only zero
elements if $l$ and $l_{\mathrm{cart}}$ have different parities. It can be verified that
$\mathbf{X}^{(l,l_{\mathrm{cart}})} \ \mathbf{W}^{(l_{\mathrm{cart}}, l)} = \boldsymbol{I}_{2l+1}$, where
$\mathbf{X}^{(l,l_{\mathrm{cart}})}$ is given in
sh_cart2rl_mat.
§Arguments
- lcart - The total Cartesian degree for the Cartesian Gaussians and also for the radial part of the solid harmonic Gaussian.
- l - The degree of the complex spherical harmonic factor in the solid harmonic Gaussian.
- cartorder - A
CartOrderstruct giving the ordering of the components of the Cartesian Gaussians. csphase- Set totrueto use the Condon–Shortley phase in the calculations of the $c$ coefficients. Seecomplexcfor more details.pureorder- APureOrderstruct giving the ordering of the components of the pure Gaussians.
§Returns
The $\mathbf{W}^{(l_{\mathrm{cart}}, l)}$ matrix.