Function qsym2::angmom::sh_conversion::sh_rl2cart_mat
source · pub fn sh_rl2cart_mat(
lcart: u32,
l: u32,
cartorder: &CartOrder,
csphase: bool,
pureorder: &PureOrder,
) -> Array2<f64>
Expand description
Obtain the matrix $\mathbf{W}^{(l_{\mathrm{cart}}, l)}
$ containing linear combination
coefficients of Cartesian Gaussians in the expansion of a real solid harmonic Gaussian, i.e.,
briefly,
\bar{\mathbf{g}}^{\mathsf{T}}(l)
= \mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
\ \mathbf{W}^{(l_{\mathrm{cart}}, l)}.
Let $\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
$ be
a real solid harmonic Gaussian defined in a similar manner to Equation 1 of Schlegel, H. B.
& Frisch, M. J. Transformation between Cartesian and pure spherical harmonic Gaussians.
International Journal of Quantum Chemistry 54, 83–87 (1995),
DOI with $n = l_{\mathrm{cart}}
$ but with real
rather than complex spherical harmonic factors, and let
$g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
$ be a Cartesian Gaussian as defined in
Equation 2 of the above reference. Here, $\lambda
$ is a single index labelling a complex
solid harmonic Gaussian of spherical harmonic degree $l
$ and order $m_l
$, and
$\lambda_{\mathrm{cart}}
$ a single index labelling a Cartesian Gaussian of degrees
$(l_x, l_y, l_z)
$ such that $l_x + l_y + l_z = l_{\mathrm{cart}}
$. We can then write
\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
= \sum_{\lambda_{\mathrm{cart}}}
g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
W^{(l_{\mathrm{cart}}, l)}_{\lambda_{\mathrm{cart}}\lambda}.
$\mathbf{W}^{(l_{\mathrm{cart}}, l)}
$ is given by
\mathbf{W}^{(l_{\mathrm{cart}}, l)}
= \mathbf{U}^{(l_{\mathrm{cart}}, l)}
\boldsymbol{\Upsilon}^{(l)\dagger},
where $\boldsymbol{\Upsilon}^{(l)\dagger}
$ is defined in sh_r2c_mat
and
$\mathbf{U}^{(l_{\mathrm{cart}}, l)}
$ in sh_cl2cart_mat
.
$\mathbf{W}^{(l_{\mathrm{cart}}, l)}
$ must be real.
$\mathbf{W}^{(l_{\mathrm{cart}}, l)}
$ has dimensions
$\frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2) \times (2l+1)
$ and contains only zero
elements if $l
$ and $l_{\mathrm{cart}}
$ have different parities. It can be verified that
$\mathbf{X}^{(l,l_{\mathrm{cart}})} \ \mathbf{W}^{(l_{\mathrm{cart}}, l)} = \boldsymbol{I}_{2l+1}
$, where
$\mathbf{X}^{(l,l_{\mathrm{cart}})}
$ is given in
sh_cart2rl_mat
.
§Arguments
- lcart - The total Cartesian degree for the Cartesian Gaussians and also for the radial part of the solid harmonic Gaussian.
- l - The degree of the complex spherical harmonic factor in the solid harmonic Gaussian.
- cartorder - A
CartOrder
struct giving the ordering of the components of the Cartesian Gaussians. csphase
- Set totrue
to use the Condon–Shortley phase in the calculations of the $c
$ coefficients. Seecomplexc
for more details.pureorder
- APureOrder
struct giving the ordering of the components of the pure Gaussians.
§Returns
The $\mathbf{W}^{(l_{\mathrm{cart}}, l)}
$ matrix.