Function qsym2::angmom::sh_conversion::sh_cart2rl_mat
source · pub fn sh_cart2rl_mat(
l: u32,
lcart: u32,
cartorder: &CartOrder,
csphase: bool,
pureorder: &PureOrder,
) -> Array2<f64>
Expand description
Obtains the real matrix $\mathbf{X}^{(l, l_{\mathrm{cart}})}
$ containing linear combination
coefficients of real solid harmonic Gaussians of a specific degree in the expansion of
Cartesian Gaussians, i.e., briefly,
\mathbf{g}^{\mathsf{T}}(l_{\mathrm{cart}})
= \bar{\mathbf{g}}^{\mathsf{T}}(l)
\ \mathbf{X}^{(l, l_{\mathrm{cart}})}.
Let $\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
$ be a real solid harmonic
Gaussian defined in a similar manner to Equation 1 of Schlegel, H. B. & Frisch, M. J.
Transformation between Cartesian and pure spherical harmonic Gaussians. International
Journal of Quantum Chemistry 54, 83–87 (1995),
DOI
with $n = l_{\mathrm{cart}}
$, but with real rather than complex spherical harmonic factors,
and let $g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
$ be a Cartesian Gaussian as defined
in Equation 2 of the above reference. Here, $\lambda
$ is a single index labelling a real
solid harmonic Gaussian of spherical harmonic degree $l
$ and real order $m_l
$, and
$\lambda_{\mathrm{cart}}
$ a single index labelling a Cartesian Gaussian of degrees
$(l_x, l_y, l_z)
$ such that $l_x + l_y + l_z = l_{\mathrm{cart}}
$.
We can then write
g(\alpha, \lambda_{\mathrm{cart}}, \mathbf{r})
= \sum_{\substack{\lambda\\ l \leq l_{\mathrm{cart}}}}
\bar{g}(\alpha, \lambda, l_{\mathrm{cart}}, \mathbf{r})
X^{(l_{\mathrm{cart}})}_{\lambda\lambda_{\mathrm{cart}}}.
We can order the rows $\lambda
$ of $\mathbf{X}^{(l_{\mathrm{cart}})}
$ that have the same
$l
$ into rectangular blocks of dimensions
$(2l+1) \times \frac{1}{2}(l_{\mathrm{cart}}+1)(l_{\mathrm{cart}}+2)
$.
We denote these blocks $\mathbf{X}^{(l, l_{\mathrm{cart}})}
$ which are given by
\mathbf{X}^{(l, l_{\mathrm{cart}})}
= \boldsymbol{\Upsilon}^{(l)} \mathbf{V}^{(l, l_{\mathrm{cart}})},
where $\boldsymbol{\Upsilon}^{(l)}
$ is defined in
sh_c2r_mat
and $\boldsymbol{V}^{(l, l_{\mathrm{cart}})}
$ in sh_cart2cl_mat
.
$\mathbf{X}^{(l, l_{\mathrm{cart}})}
$ must be real.
§Arguments
l
- The degree of the complex spherical harmonic factor in the solid harmonic Gaussian.lcart
- The total Cartesian degree for the Cartesian Gaussians and also for the radial part of the solid harmonic Gaussian.cartorder
- ACartOrder
struct giving the ordering of the components of the Cartesian Gaussians.csphase
- Set totrue
to use the Condon–Shortley phase in the calculations of the $c^{-1}
$ coefficients. Seecomplexc
andcomplexcinv
for more details.pureorder
- APureOrder
struct giving the ordering of the components of the pure Gaussians.
§Returns
The $\mathbf{X}^{(l, l_{\mathrm{cart}})}
$ block.