Struct qsym2::sandbox::target::real_space_function::RealSpaceFunction
source · pub struct RealSpaceFunction<T, F>{ /* private fields */ }
Expand description
Structure to manage real-space functions.
Implementations§
source§impl<T, F> RealSpaceFunction<T, F>
impl<T, F> RealSpaceFunction<T, F>
sourcepub fn builder() -> RealSpaceFunctionBuilder<T, F>
pub fn builder() -> RealSpaceFunctionBuilder<T, F>
Returns a builder to construct a new RealSpaceFunction
.
sourcepub fn grid_points(&self) -> Vec<&Point3<f64>>
pub fn grid_points(&self) -> Vec<&Point3<f64>>
Returns a vector of shared references to the grid points at which the real-space function is evaluated.
sourcepub fn function(&self) -> &F
pub fn function(&self) -> &F
Returns a shared reference to the function defining the RealSpaceFunction
.
Trait Implementations§
source§impl<T, F> Clone for RealSpaceFunction<T, F>
impl<T, F> Clone for RealSpaceFunction<T, F>
source§fn clone(&self) -> RealSpaceFunction<T, F>
fn clone(&self) -> RealSpaceFunction<T, F>
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl<T, F> ComplexConjugationTransformable for RealSpaceFunction<T, F>
impl<T, F> ComplexConjugationTransformable for RealSpaceFunction<T, F>
source§fn transform_cc_mut(&mut self) -> Result<&mut Self, TransformationError>
fn transform_cc_mut(&mut self) -> Result<&mut Self, TransformationError>
source§fn transform_cc(&self) -> Result<Self, TransformationError>
fn transform_cc(&self) -> Result<Self, TransformationError>
source§impl<T, F> Display for RealSpaceFunction<T, F>
impl<T, F> Display for RealSpaceFunction<T, F>
source§impl<'a, G, T, F> Orbit<G, RealSpaceFunction<T, F>> for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>where
G: SymmetryGroupProperties + Clone,
T: ComplexFloat + Debug + Lapack,
F: Fn(&Point3<f64>) -> T,
RealSpaceFunction<T, F>: SymmetryTransformable,
impl<'a, G, T, F> Orbit<G, RealSpaceFunction<T, F>> for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>where
G: SymmetryGroupProperties + Clone,
T: ComplexFloat + Debug + Lapack,
F: Fn(&Point3<f64>) -> T,
RealSpaceFunction<T, F>: SymmetryTransformable,
§type OrbitIter = OrbitIterator<'a, G, RealSpaceFunction<T, F>>
type OrbitIter = OrbitIterator<'a, G, RealSpaceFunction<T, F>>
source§fn origin(&self) -> &RealSpaceFunction<T, F>
fn origin(&self) -> &RealSpaceFunction<T, F>
source§impl<T, F> Overlap<T, Dim<[usize; 1]>> for RealSpaceFunction<T, F>
impl<T, F> Overlap<T, Dim<[usize; 1]>> for RealSpaceFunction<T, F>
source§fn overlap(
&self,
other: &Self,
metric: Option<&Array1<T>>,
_: Option<&Array1<T>>,
) -> Result<T, Error>
fn overlap( &self, other: &Self, metric: Option<&Array1<T>>, _: Option<&Array1<T>>, ) -> Result<T, Error>
Computes the overlap between two real-space functions.
No attempts are made to check that the grid points between the two real-space functions are ‘compatible’. The overlap is simply evaluated as
\sum_i [\hat{\iota} f_1(\mathbf{r}_{1i})]^* f_2(\mathbf{r}_{2i}) w_i,
where $w_i
$ are weight values.
§Errors
Errors if self
and other
have mismatched numbers of grid points or if the number of
weight values does not match the number of grid points.
source§fn overlap_definition(&self) -> String
fn overlap_definition(&self) -> String
Returns the mathematical definition of the overlap between two real-space functions.
source§fn complex_symmetric(&self) -> bool
fn complex_symmetric(&self) -> bool
true
, the inner product is bilinear and $\hat{\iota} = \hat{\kappa}
$. If false
,
the inner product is sesquilinear and $\hat{\iota} = \mathrm{id}
$.source§impl<'a, G, T, F> RepAnalysis<G, RealSpaceFunction<T, F>, T, Dim<[usize; 1]>> for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>where
G: SymmetryGroupProperties + Clone,
G::CharTab: SubspaceDecomposable<T>,
T: Lapack + ComplexFloat<Real = <T as Scalar>::Real> + Debug + Send + Sync + Mul<<T as ComplexFloat>::Real, Output = T>,
<T as ComplexFloat>::Real: Debug + Zero + From<u16> + ToPrimitive + RelativeEq<<T as ComplexFloat>::Real> + AbsDiffEq<Epsilon = <T as Scalar>::Real>,
F: Clone + Sync + Send + Fn(&Point3<f64>) -> T,
RealSpaceFunction<T, F>: SymmetryTransformable,
impl<'a, G, T, F> RepAnalysis<G, RealSpaceFunction<T, F>, T, Dim<[usize; 1]>> for RealSpaceFunctionSymmetryOrbit<'a, G, T, F>where
G: SymmetryGroupProperties + Clone,
G::CharTab: SubspaceDecomposable<T>,
T: Lapack + ComplexFloat<Real = <T as Scalar>::Real> + Debug + Send + Sync + Mul<<T as ComplexFloat>::Real, Output = T>,
<T as ComplexFloat>::Real: Debug + Zero + From<u16> + ToPrimitive + RelativeEq<<T as ComplexFloat>::Real> + AbsDiffEq<Epsilon = <T as Scalar>::Real>,
F: Clone + Sync + Send + Fn(&Point3<f64>) -> T,
RealSpaceFunction<T, F>: SymmetryTransformable,
source§fn analyse_rep(
&self,
) -> Result<<<G as CharacterProperties>::CharTab as SubspaceDecomposable<T>>::Decomposition, DecompositionError>
fn analyse_rep( &self, ) -> Result<<<G as CharacterProperties>::CharTab as SubspaceDecomposable<T>>::Decomposition, DecompositionError>
Reduces the representation or corepresentation spanned by the real-space functions in the orbit to a direct sum of the irreducible representations or corepresentations of the generating symmetry group.
§Returns
The decomposed result.
§Errors
Errors if the decomposition fails, e.g. because one or more calculated multiplicities are non-integral.
source§fn set_smat(&mut self, smat: Array2<T>)
fn set_smat(&mut self, smat: Array2<T>)
source§fn smat(&self) -> Option<&Array2<T>>
fn smat(&self) -> Option<&Array2<T>>
source§fn xmat(&self) -> &Array2<T>
fn xmat(&self) -> &Array2<T>
\mathbf{X}
$ for the overlap matrix $\mathbf{S}
$
between the items in the orbit. Read moresource§fn norm_preserving_scalar_map(&self, i: usize) -> Result<fn(_: T) -> T, Error>
fn norm_preserving_scalar_map(&self, i: usize) -> Result<fn(_: T) -> T, Error>
f
$ for every element of the generating group
defined by Read moresource§fn integrality_threshold(&self) -> <T as ComplexFloat>::Real
fn integrality_threshold(&self) -> <T as ComplexFloat>::Real
source§fn eigenvalue_comparison_mode(&self) -> &EigenvalueComparisonMode
fn eigenvalue_comparison_mode(&self) -> &EigenvalueComparisonMode
source§fn calc_smat(
&mut self,
metric: Option<&Array<T, D>>,
metric_h: Option<&Array<T, D>>,
use_cayley_table: bool,
) -> Result<&mut Self, Error>
fn calc_smat( &mut self, metric: Option<&Array<T, D>>, metric_h: Option<&Array<T, D>>, use_cayley_table: bool, ) -> Result<&mut Self, Error>
source§fn normalise_smat(&mut self) -> Result<&mut Self, Error>
fn normalise_smat(&mut self) -> Result<&mut Self, Error>
source§fn calc_dmat(&self, op: &G::GroupElement) -> Result<Array2<T>, Error>
fn calc_dmat(&self, op: &G::GroupElement) -> Result<Array2<T>, Error>
\mathbf{D}(g)
$ for a particular
element $g
$ in the generating group in the basis of the orbit. Read moresource§fn calc_character(&self, op: &G::GroupElement) -> Result<T, Error>
fn calc_character(&self, op: &G::GroupElement) -> Result<T, Error>
g
$ in the generating group in the basis
of the orbit. Read moresource§fn calc_characters(
&self,
) -> Result<Vec<(<G as ClassProperties>::ClassSymbol, T)>, Error>
fn calc_characters( &self, ) -> Result<Vec<(<G as ClassProperties>::ClassSymbol, T)>, Error>
source§impl<T, F> SpatialUnitaryTransformable for RealSpaceFunction<T, F>
impl<T, F> SpatialUnitaryTransformable for RealSpaceFunction<T, F>
source§fn transform_spatial_mut(
&mut self,
rmat: &Array2<f64>,
_: Option<&Permutation<usize>>,
) -> Result<&mut Self, TransformationError>
fn transform_spatial_mut( &mut self, rmat: &Array2<f64>, _: Option<&Permutation<usize>>, ) -> Result<&mut Self, TransformationError>
source§fn transform_spatial(
&self,
rmat: &Array2<f64>,
perm: Option<&Permutation<usize>>,
) -> Result<Self, TransformationError>
fn transform_spatial( &self, rmat: &Array2<f64>, perm: Option<&Permutation<usize>>, ) -> Result<Self, TransformationError>
source§impl<T, F> SpinUnitaryTransformable for RealSpaceFunction<T, F>
impl<T, F> SpinUnitaryTransformable for RealSpaceFunction<T, F>
source§fn transform_spin_mut(
&mut self,
_: &Array2<Complex<f64>>,
) -> Result<&mut Self, TransformationError>
fn transform_spin_mut( &mut self, _: &Array2<Complex<f64>>, ) -> Result<&mut Self, TransformationError>
Performs a spin transformation in-place.
Since real-space functions are entirely spatial, spin transformations have no effect on
them. This thus simply returns self
without modification.
source§fn transform_spin(
&self,
dmat: &Array2<Complex<f64>>,
) -> Result<Self, TransformationError>
fn transform_spin( &self, dmat: &Array2<Complex<f64>>, ) -> Result<Self, TransformationError>
source§impl<T, F> SymmetryTransformable for RealSpaceFunction<T, F>where
T: ComplexFloat + Lapack,
F: Clone + Fn(&Point3<f64>) -> T,
RealSpaceFunction<T, F>: SpatialUnitaryTransformable + TimeReversalTransformable,
impl<T, F> SymmetryTransformable for RealSpaceFunction<T, F>where
T: ComplexFloat + Lapack,
F: Clone + Fn(&Point3<f64>) -> T,
RealSpaceFunction<T, F>: SpatialUnitaryTransformable + TimeReversalTransformable,
source§fn sym_permute_sites_spatial(
&self,
_: &SymmetryOperation,
) -> Result<Permutation<usize>, TransformationError>
fn sym_permute_sites_spatial( &self, _: &SymmetryOperation, ) -> Result<Permutation<usize>, TransformationError>
Real-space functions have no local sites for permutation. This method therefore simply returns the identity permutation on one object.
source§fn sym_transform_spatial_mut(
&mut self,
symop: &SymmetryOperation,
) -> Result<&mut Self, TransformationError>
fn sym_transform_spatial_mut( &mut self, symop: &SymmetryOperation, ) -> Result<&mut Self, TransformationError>
source§fn sym_transform_spatial(
&self,
symop: &SymmetryOperation,
) -> Result<Self, TransformationError>
fn sym_transform_spatial( &self, symop: &SymmetryOperation, ) -> Result<Self, TransformationError>
source§fn sym_transform_spatial_with_spintimerev_mut(
&mut self,
symop: &SymmetryOperation,
) -> Result<&mut Self, TransformationError>
fn sym_transform_spatial_with_spintimerev_mut( &mut self, symop: &SymmetryOperation, ) -> Result<&mut Self, TransformationError>
source§fn sym_transform_spatial_with_spintimerev(
&self,
symop: &SymmetryOperation,
) -> Result<Self, TransformationError>
fn sym_transform_spatial_with_spintimerev( &self, symop: &SymmetryOperation, ) -> Result<Self, TransformationError>
source§fn sym_transform_spin_mut(
&mut self,
symop: &SymmetryOperation,
) -> Result<&mut Self, TransformationError>
fn sym_transform_spin_mut( &mut self, symop: &SymmetryOperation, ) -> Result<&mut Self, TransformationError>
source§fn sym_transform_spin(
&self,
symop: &SymmetryOperation,
) -> Result<Self, TransformationError>
fn sym_transform_spin( &self, symop: &SymmetryOperation, ) -> Result<Self, TransformationError>
source§fn sym_transform_spin_spatial_mut(
&mut self,
symop: &SymmetryOperation,
) -> Result<&mut Self, TransformationError>
fn sym_transform_spin_spatial_mut( &mut self, symop: &SymmetryOperation, ) -> Result<&mut Self, TransformationError>
source§fn sym_transform_spin_spatial(
&self,
symop: &SymmetryOperation,
) -> Result<Self, TransformationError>
fn sym_transform_spin_spatial( &self, symop: &SymmetryOperation, ) -> Result<Self, TransformationError>
impl<T, F> DefaultTimeReversalTransformable for RealSpaceFunction<T, F>
Auto Trait Implementations§
impl<T, F> Freeze for RealSpaceFunction<T, F>where
F: Freeze,
impl<T, F> RefUnwindSafe for RealSpaceFunction<T, F>where
F: RefUnwindSafe,
impl<T, F> Send for RealSpaceFunction<T, F>where
F: Send,
impl<T, F> Sync for RealSpaceFunction<T, F>where
F: Sync,
impl<T, F> Unpin for RealSpaceFunction<T, F>where
F: Unpin,
impl<T, F> UnwindSafe for RealSpaceFunction<T, F>where
F: UnwindSafe,
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<T> Conv for T
impl<T> Conv for T
§impl<T> FmtForward for T
impl<T> FmtForward for T
§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self
to use its Binary
implementation when Debug
-formatted.§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self
to use its Display
implementation when
Debug
-formatted.§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self
to use its LowerExp
implementation when
Debug
-formatted.§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self
to use its LowerHex
implementation when
Debug
-formatted.§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self
to use its Octal
implementation when Debug
-formatted.§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self
to use its Pointer
implementation when
Debug
-formatted.§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self
to use its UpperExp
implementation when
Debug
-formatted.§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self
to use its UpperHex
implementation when
Debug
-formatted.§fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self
, then passes self.as_ref()
into the pipe function.§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self
, then passes self.as_mut()
into the pipe
function.§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self
, then passes self.deref()
into the pipe function.§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.§impl<T> Tap for T
impl<T> Tap for T
§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B>
of a value. Read more§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B>
of a value. Read more§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R>
view of a value. Read more§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R>
view of a value. Read more§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target
of a value. Read more§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target
of a value. Read more§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds.§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow()
only in debug builds, and is erased in release
builds.§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut()
only in debug builds, and is erased in release
builds.§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref()
only in debug builds, and is erased in release
builds.§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut()
only in debug builds, and is erased in release
builds.§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref()
only in debug builds, and is erased in release
builds.source§impl<T> TimeReversalTransformable for T
impl<T> TimeReversalTransformable for T
source§fn transform_timerev_mut(&mut self) -> Result<&mut T, TransformationError>
fn transform_timerev_mut(&mut self) -> Result<&mut T, TransformationError>
Performs a time-reversal transformation in-place.
The default implementation of the time-reversal transformation for any type that implements
SpinUnitaryTransformable
and ComplexConjugationTransformable
is a spin rotation by
$\pi
$ about the space-fixed $y
$-axis followed by a complex conjugation.