1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
//! Template molecules for testing purposes.

use crate::auxiliary::atom::{Atom, AtomKind, ElementMap};
use crate::auxiliary::molecule::Molecule;
use nalgebra::Point3;

#[must_use]
pub(crate) fn gen_twisted_h8(theta: f64) -> Molecule {
    let emap = ElementMap::new();
    let (atomic_number, atomic_mass) = emap.get("H").expect("Unable to retrieve element.");
    let atoms: [Atom; 8] = [
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(0.0, 0.0, 0.0),
            threshold: 1e-7,
        },
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(1.0, 0.0, 0.0),
            threshold: 1e-7,
        },
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(1.0, 1.0, 0.0),
            threshold: 1e-7,
        },
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(0.0, 1.0, 0.0),
            threshold: 1e-7,
        },
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(
                1.0 / (2.0_f64.sqrt()) * (5.0 * std::f64::consts::FRAC_PI_4 + theta).cos() + 0.5,
                1.0 / (2.0_f64.sqrt()) * (5.0 * std::f64::consts::FRAC_PI_4 + theta).sin() + 0.5,
                2.0,
            ),
            threshold: 1e-7,
        },
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(
                1.0 / (2.0_f64.sqrt()) * (7.0 * std::f64::consts::FRAC_PI_4 + theta).cos() + 0.5,
                1.0 / (2.0_f64.sqrt()) * (7.0 * std::f64::consts::FRAC_PI_4 + theta).sin() + 0.5,
                2.0,
            ),
            threshold: 1e-7,
        },
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(
                1.0 / (2.0_f64.sqrt()) * (1.0 * std::f64::consts::FRAC_PI_4 + theta).cos() + 0.5,
                1.0 / (2.0_f64.sqrt()) * (1.0 * std::f64::consts::FRAC_PI_4 + theta).sin() + 0.5,
                2.0,
            ),
            threshold: 1e-7,
        },
        Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *atomic_mass,
            coordinates: Point3::new(
                1.0 / (2.0_f64.sqrt()) * (3.0 * std::f64::consts::FRAC_PI_4 + theta).cos() + 0.5,
                1.0 / (2.0_f64.sqrt()) * (3.0 * std::f64::consts::FRAC_PI_4 + theta).sin() + 0.5,
                2.0,
            ),
            threshold: 1e-7,
        },
    ];
    Molecule::from_atoms(&atoms, 1e-7)
}

#[must_use]
pub(crate) fn gen_arbitrary_half_sandwich(n: u32) -> Molecule {
    let emap = ElementMap::new();
    let mut atoms: Vec<Atom> = vec![];
    let (h_atomic_number, h_atomic_mass) = emap.get("H").expect("Unable to retrieve element.");
    let (c_atomic_number, c_atomic_mass) = emap.get("C").expect("Unable to retrieve element.");
    let (v_atomic_number, v_atomic_mass) = emap.get("V").expect("Unable to retrieve element.");
    atoms.push(Atom {
        kind: AtomKind::Ordinary,
        atomic_number: *v_atomic_number,
        atomic_symbol: "V".to_owned(),
        atomic_mass: *v_atomic_mass,
        coordinates: Point3::new(0.0, 0.0, 1.0 + 0.1 * (f64::from(n))),
        threshold: 1e-7,
    });
    for i in 0..n {
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *c_atomic_number,
            atomic_symbol: "C".to_owned(),
            atomic_mass: *c_atomic_mass,
            coordinates: Point3::new(
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                0.0,
            ),
            threshold: 1e-7,
        });
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *h_atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *h_atomic_mass,
            coordinates: Point3::new(
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                0.0,
            ),
            threshold: 1e-7,
        });
    }
    Molecule::from_atoms(&atoms, 1e-7)
}

#[must_use]
pub(crate) fn gen_arbitrary_eclipsed_sandwich(n: u32) -> Molecule {
    let emap = ElementMap::new();
    let mut atoms: Vec<Atom> = vec![];
    let (h_atomic_number, h_atomic_mass) = emap.get("H").expect("Unable to retrieve element.");
    let (c_atomic_number, c_atomic_mass) = emap.get("C").expect("Unable to retrieve element.");
    let (m_atomic_number, m_atomic_mass) = emap.get("Co").expect("Unable to retrieve element.");
    atoms.push(Atom {
        kind: AtomKind::Ordinary,
        atomic_number: *m_atomic_number,
        atomic_symbol: "Co".to_owned(),
        atomic_mass: *m_atomic_mass,
        coordinates: Point3::new(0.0, 0.0, 0.0),
        threshold: 1e-7,
    });
    for i in 0..n {
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *c_atomic_number,
            atomic_symbol: "C".to_owned(),
            atomic_mass: *c_atomic_mass,
            coordinates: Point3::new(
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                -1.0 - 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *h_atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *h_atomic_mass,
            coordinates: Point3::new(
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                -1.0 - 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *c_atomic_number,
            atomic_symbol: "C".to_owned(),
            atomic_mass: *c_atomic_mass,
            coordinates: Point3::new(
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                1.0 + 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *h_atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *h_atomic_mass,
            coordinates: Point3::new(
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                1.0 + 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
    }
    Molecule::from_atoms(&atoms, 1e-7)
}

#[must_use]
pub fn gen_arbitrary_twisted_sandwich(n: u32, frac: f64) -> Molecule {
    let emap = ElementMap::new();
    let mut atoms: Vec<Atom> = vec![];
    let (h_atomic_number, h_atomic_mass) = emap.get("H").expect("Unable to retrieve element.");
    let (c_atomic_number, c_atomic_mass) = emap.get("C").expect("Unable to retrieve element.");
    let (m_atomic_number, m_atomic_mass) = emap.get("Co").expect("Unable to retrieve element.");
    atoms.push(Atom {
        kind: AtomKind::Ordinary,
        atomic_number: *m_atomic_number,
        atomic_symbol: "Co".to_owned(),
        atomic_mass: *m_atomic_mass,
        coordinates: Point3::new(0.0, 0.0, 0.0),
        threshold: 1e-7,
    });
    for i in 0..n {
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *c_atomic_number,
            atomic_symbol: "C".to_owned(),
            atomic_mass: *c_atomic_mass,
            coordinates: Point3::new(
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.0 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                -1.0 - 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *h_atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *h_atomic_mass,
            coordinates: Point3::new(
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.5 * ((f64::from(i)) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                -1.0 - 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *c_atomic_number,
            atomic_symbol: "C".to_owned(),
            atomic_mass: *c_atomic_mass,
            coordinates: Point3::new(
                1.0 * ((f64::from(i) + frac) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.0 * ((f64::from(i) + frac) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                1.0 + 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
        atoms.push(Atom {
            kind: AtomKind::Ordinary,
            atomic_number: *h_atomic_number,
            atomic_symbol: "H".to_owned(),
            atomic_mass: *h_atomic_mass,
            coordinates: Point3::new(
                1.5 * ((f64::from(i) + frac) * 2.0 * std::f64::consts::PI / (f64::from(n))).cos(),
                1.5 * ((f64::from(i) + frac) * 2.0 * std::f64::consts::PI / (f64::from(n))).sin(),
                1.0 + 0.1 * (f64::from(n)),
            ),
            threshold: 1e-7,
        });
    }
    Molecule::from_atoms(&atoms, 1e-7)
}